在ResNet50网络的每个stage之后插入Shuffle Attention,给出代码演示并详细解释
时间: 2024-02-17 07:00:41 浏览: 73
在ResNet50网络的每个stage之后插入Shuffle Attention的代码演示:
```
import torch.nn as nn
from torchvision.models.resnet import ResNet, BasicBlock, Bottleneck
class ShuffleAttention(nn.Module):
def __init__(self, channels, reduction=16):
super(ShuffleAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu(self.fc1(self.max_pool(x))))
out = self.sigmoid(avg_out + max_out)
return x * out
class ResNetWithShuffleAttention(ResNet):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNetWithShuffleAttention, self).__init__(block, layers, num_classes=num_classes, zero_init_residual=zero_init_residual)
self.att1 = ShuffleAttention(256)
self.att2 = ShuffleAttention(512)
self.att3 = ShuffleAttention(1024)
self.att4 = ShuffleAttention(2048)
# Replace the original blocks with the new blocks
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=False)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=False)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=False)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
# Add Shuffle Attention after each stage
if planes == 64:
layers.append(self.att1)
elif planes == 128:
layers.append(self.att2)
elif planes == 256:
layers.append(self.att3)
elif planes == 512:
layers.append(self.att4)
return nn.Sequential(*layers)
```
在这个代码中,我们首先定义了一个ShuffleAttention模块,然后将其插入到ResNet50网络的每个stage之后。在_ResNetWithShuffleAttention_类中,我们重写了_ResNet_类的_make_layer方法,并在每个stage中添加了ShuffleAttention模块。
在_make_layer方法中,我们首先检查当前的planes参数(即每个stage的输出通道数),然后创建一个包含ShuffleAttention的新层。最后,我们将新层添加到该stage中。
ShuffleAttention模块中,我们使用了AdaptiveAvgPool2d和AdaptiveMaxPool2d来对输入进行全局平均池化和全局最大池化。然后,我们使用两个卷积层和ReLU激活函数来提取特征。最后,我们使用Sigmoid激活函数来产生一个0到1之间的数值,以便控制输入的权重。在forward方法中,我们首先对输入进行全局平均池化和全局最大池化,并将它们连接起来。然后,我们将连接后的特征图通过两个卷积层和ReLU激活函数处理,最后使用Sigmoid激活函数产生一个权重矩阵。最终,我们将原始输入和权重矩阵相乘,从而获得加权后的特征。
阅读全文