python实现textcnn,改变超参数,如果在python中画出对照的图每一次的准确率的图
时间: 2024-03-03 11:47:29 浏览: 53
好的,我可以为您提供代码和说明来实现这个问题。
首先,我们需要导入必要的库:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Input, Embedding, Conv1D, GlobalMaxPooling1D, Dense
from tensorflow.keras.models import Model
import matplotlib.pyplot as plt
```
接下来,我们需要加载 IMDB 数据集,并进行预处理:
```python
# 加载 IMDB 数据集
vocab_size = 10000
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=vocab_size)
# 将文本序列填充到相同的长度
max_len = 128
X_train = pad_sequences(X_train, maxlen=max_len)
X_test = pad_sequences(X_test, maxlen=max_len)
```
然后,我们可以定义 TextCNN 模型:
```python
def TextCNN(max_len, vocab_size, embedding_size, filter_sizes, num_filters, num_classes):
inputs = Input(shape=(max_len,))
x = Embedding(vocab_size, embedding_size)(inputs)
pooled_outputs = []
for fsz in filter_sizes:
conv = Conv1D(num_filters, fsz, activation='relu')(x)
pooled = GlobalMaxPooling1D()(conv)
pooled_outputs.append(pooled)
x = tf.keras.layers.concatenate(pooled_outputs, axis=-1)
x = Dense(128, activation='relu')(x)
predictions = Dense(num_classes, activation='sigmoid')(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
return model
```
我们可以定义一些超参数,如下:
```python
embedding_size = 128
filter_sizes = [3, 4, 5]
num_filters = 128
num_classes = 1
```
然后我们可以训练模型,同时记录每个 epoch 的准确率:
```python
# 记录每个 epoch 的准确率
history = {'accuracy': [], 'val_accuracy': []}
# 训练模型并记录准确率
for i in range(10):
model = TextCNN(max_len, vocab_size, embedding_size, filter_sizes, num_filters, num_classes)
hist = model.fit(X_train, y_train, batch_size=128, epochs=1, validation_data=(X_test, y_test))
history['accuracy'].append(hist.history['accuracy'][0])
history['val_accuracy'].append(hist.history['val_accuracy'][0])
```
最后,我们可以绘制准确率的图表:
```python
# 绘制准确率的图表
plt.plot(history['accuracy'], label='accuracy')
plt.plot(history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```
您可以更改超参数并查看准确率图表的变化。
阅读全文