请用python编写TCN时间序列预测的代码
时间: 2024-02-04 14:01:53 浏览: 92
好的,以下是使用Python编写的TCN时间序列预测的代码示例:
首先,需要安装tcn库:
```python
!pip install tcn
```
然后,导入必要的库:
```python
import numpy as np
import matplotlib.pyplot as plt
from tcn import TCN
from keras.models import Sequential
from keras.layers import Dense, Dropout
```
接着,定义数据集和预处理:
```python
# 生成时间序列数据
def generate_data(length=1000, period=50, scale=0.05):
X = np.arange(length)
y = np.sin(2 * np.pi * X / period) + scale * np.random.randn(length)
return X, y
# 划分训练集和测试集
def split_data(X, y, train_ratio=0.8):
train_size = int(len(X) * train_ratio)
X_train, y_train = X[:train_size], y[:train_size]
X_test, y_test = X[train_size:], y[train_size:]
return X_train, y_train, X_test, y_test
# 标准化数据
def normalize_data(X_train, y_train, X_test, y_test):
X_mean, X_std = X_train.mean(), X_train.std()
y_mean, y_std = y_train.mean(), y_train.std()
X_train = (X_train - X_mean) / X_std
y_train = (y_train - y_mean) / y_std
X_test = (X_test - X_mean) / X_std
y_test = (y_test - y_mean) / y_std
return X_train, y_train, X_test, y_test
# 创建数据集
X, y = generate_data()
X_train, y_train, X_test, y_test = split_data(X, y)
X_train, y_train, X_test, y_test = normalize_data(X_train, y_train, X_test, y_test)
```
然后,创建TCN模型:
```python
# 初始化TCN模型
model = Sequential()
model.add(TCN(input_shape=(None, 1),
nb_filters=64,
kernel_size=2,
nb_stacks=2,
activation='relu',
use_skip_connections=True))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
```
接下来,训练模型:
```python
# 训练模型
model.fit(X_train.reshape(-1, 1, 1), y_train.reshape(-1, 1), epochs=50, validation_data=(X_test.reshape(-1, 1, 1), y_test.reshape(-1, 1)))
```
最后,绘制预测结果:
```python
# 预测结果
y_pred = model.predict(X_test.reshape(-1, 1, 1))
# 绘制预测结果
plt.figure(figsize=(10, 6))
plt.plot(X_test, y_test, label='True')
plt.plot(X_test, y_pred, label='Prediction')
plt.legend()
plt.show()
```
完整代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from tcn import TCN
from keras.models import Sequential
from keras.layers import Dense, Dropout
# 生成时间序列数据
def generate_data(length=1000, period=50, scale=0.05):
X = np.arange(length)
y = np.sin(2 * np.pi * X / period) + scale * np.random.randn(length)
return X, y
# 划分训练集和测试集
def split_data(X, y, train_ratio=0.8):
train_size = int(len(X) * train_ratio)
X_train, y_train = X[:train_size], y[:train_size]
X_test, y_test = X[train_size:], y[train_size:]
return X_train, y_train, X_test, y_test
# 标准化数据
def normalize_data(X_train, y_train, X_test, y_test):
X_mean, X_std = X_train.mean(), X_train.std()
y_mean, y_std = y_train.mean(), y_train.std()
X_train = (X_train - X_mean) / X_std
y_train = (y_train - y_mean) / y_std
X_test = (X_test - X_mean) / X_std
y_test = (y_test - y_mean) / y_std
return X_train, y_train, X_test, y_test
# 创建数据集
X, y = generate_data()
X_train, y_train, X_test, y_test = split_data(X, y)
X_train, y_train, X_test, y_test = normalize_data(X_train, y_train, X_test, y_test)
# 初始化TCN模型
model = Sequential()
model.add(TCN(input_shape=(None, 1),
nb_filters=64,
kernel_size=2,
nb_stacks=2,
activation='relu',
use_skip_connections=True))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# 训练模型
model.fit(X_train.reshape(-1, 1, 1), y_train.reshape(-1, 1), epochs=50, validation_data=(X_test.reshape(-1, 1, 1), y_test.reshape(-1, 1)))
# 预测结果
y_pred = model.predict(X_test.reshape(-1, 1, 1))
# 绘制预测结果
plt.figure(figsize=(10, 6))
plt.plot(X_test, y_test, label='True')
plt.plot(X_test, y_pred, label='Prediction')
plt.legend()
plt.show()
```
阅读全文