代码实现Vision Transformer图像分类
时间: 2023-06-13 13:05:58 浏览: 274
好的,以下是一个简单的 PyTorch 实现:
1. 安装依赖库
```python
!pip install torch torchvision
```
2. 导入模块
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```
3. 定义模型
```python
class ViT(nn.Module):
def __init__(self, image_size=224, patch_size=16, num_classes=10, dim=768, depth=12, heads=12, mlp_dim=3072):
super().__init__()
self.num_patches = (image_size // patch_size) ** 2
self.patch_dim = 3 * patch_size ** 2
self.patch_embeddings = nn.Linear(self.patch_dim, dim)
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.zeros(1, 1, dim))
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=dim, nhead=heads, dim_feedforward=mlp_dim),
num_layers=depth
)
self.fc = nn.Linear(dim, num_classes)
def forward(self, x):
x = self.patch_embeddings(x.view(-1, self.patch_dim))
x = x.view(-1, self.num_patches, -1)
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat([cls_token, x], dim=1)
x = x + self.position_embeddings
x = self.transformer(x.transpose(0, 1)).transpose(0, 1)
x = x[:, 0]
x = self.fc(x)
return x
```
4. 加载数据集
```python
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
```
5. 定义损失函数和优化器
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ViT().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
```
6. 训练模型
```python
def train():
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} '
f'({100. * correct / len(test_loader.dataset):.0f}%)\n')
```
7. 训练模型并验证
```python
for epoch in range(1, 6):
train()
test()
```
以上是一个简单的 Vision Transformer 图像分类的实现,可以根据自己的需要进行修改。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![7z](https://img-home.csdnimg.cn/images/20241231044736.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)