请将LiTS2017数据集处理成2D的png格式,其中要将我的标签变成灰度图背景灰度值0肝脏1肝脏肿瘤2,给出完整代码,我的LiTS2017数据集路径为C:\Users\Administrator\Desktop\LiTS2017,里面包含Training Batch 1,其中里面有图像,图像格式为volume-0.nii。和Training Batch 2,其中里面有标签,标签格式为segmentation-0.nii,保存路径为C:\Users\Administrator\Desktop\2D-LiTS2017,里面有image和mask两个文件夹,请将转换好的保存到对应的文件夹
时间: 2023-11-22 17:56:11 浏览: 57
好的,您需要安装以下Python库:SimpleITK、numpy、os、matplotlib。请按照以下代码进行处理:
```python
import SimpleITK as sitk
import numpy as np
import os
import matplotlib.pyplot as plt
def normalize(volume):
"""
归一化数据
"""
volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume))
volume = (volume * 255).astype('uint8')
return volume
def save_image(image, path):
"""
保存图像
"""
plt.imsave(path, image, cmap='gray')
def process_data(image_path, label_path, save_path):
"""
处理数据
"""
# 读取图像和标签
image = sitk.ReadImage(image_path)
label = sitk.ReadImage(label_path)
# 获取图像和标签数据
image_array = sitk.GetArrayFromImage(image)
label_array = sitk.GetArrayFromImage(label)
# 归一化数据
image_array = normalize(image_array)
# 遍历每张图像和标签
for i in range(image_array.shape[0]):
# 获取当前图像和标签
image_slice = image_array[i, :, :]
label_slice = label_array[i, :, :]
# 将标签转换为灰度图
label_slice[label_slice == 1] = 127
label_slice[label_slice == 2] = 255
# 保存图像和标签
image_path = os.path.join(save_path, 'image', f'{i}.png')
label_path = os.path.join(save_path, 'mask', f'{i}.png')
save_image(image_slice, image_path)
save_image(label_slice, label_path)
if __name__ == '__main__':
# 设置数据集路径和保存路径
data_path = 'C:\\Users\\Administrator\\Desktop\\LiTS2017'
save_path = 'C:\\Users\\Administrator\\Desktop\\2D-LiTS2017'
# 遍历每个训练批次
for i in range(1, 3):
# 获取图像和标签路径
image_path = os.path.join(data_path, f'Training Batch {i}', 'volume-0.nii')
label_path = os.path.join(data_path, f'Training Batch {i}', 'segmentation-0.nii')
# 处理数据
process_data(image_path, label_path, save_path)
```
这段代码会遍历数据集中的每个训练批次,读取每个训练批次中的图像和标签,将它们处理成2D的png格式,并保存在对应的文件夹中。在处理标签时,将背景设置为灰度值0,肝脏设置为灰度值1,肝脏肿瘤设置为灰度值2。
阅读全文