(64849, 21) (64849, 1) trainX Y shape is: (64599, 48, 21) (64599, 60, 21) (64599, 1) Traceback (most recent call last): File ~\anaconda4\envs\tensorflow\lib\site-packages\spyder_kernels\py3compat.py:356 in compat_exec exec(code, globals, locals) File d:\lstnet_keras-master\train_batch_a1.py:148 model,normalize = startTrainMult_1H(data,name,config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a38.py:570 in startTrainMult_1H model = trainModel(trainX1, trainX2 , trainY, config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a38.py:500 in trainModel model = LSTNetAttention(trainX1,trainX2,trainY,config) File D:\lstnet_keras-master\lstm\LSTNet_Interface_a38.py:443 in LSTNetAttention lstm1 = LSTM(64, return_sequences=True)(input1) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\layers\recurrent.py:541 in __call__ return super(RNN, self).__call__(inputs, **kwargs) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py:75 in symbolic_fn_wrapper return func(*args, **kwargs) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\engine\base_layer.py:475 in __call__ previous_mask = _collect_previous_mask(inputs) File ~\anaconda4\envs\tensorflow\lib\site-packages\keras\engine\base_layer.py:1441 in _collect_previous_mask mask = node.output_masks[tensor_index] AttributeError: 'Node' object has no attribute 'output_masks'

时间: 2023-06-30 18:05:01 浏览: 78
这个错误是由于 Keras 版本的问题导致的。在旧版本的 Keras 中,LSTM 层的参数是 return_sequences 和 return_state,而在新版本的 Keras 中,LSTM 层的参数是 return_sequences、return_state 和 return_attention。你可以检查一下你使用的 Keras 版本是否与代码中使用的版本相同。如果不同,你需要修改代码以适应你的 Keras 版本。另外,你可以尝试在 LSTM 层中添加 `return_sequences=True` 参数来解决这个问题。
相关问题

输入维度是这样的 :trainX Y shape is: (4755, 48, 23) (4755, 60, 23) (4755, 5, 1)

根据你提供的输入维度,你可以使用 `Input` 函数来定义输入层,代码如下: ``` input_data1 = Input(shape=(48, 23)) input_data2 = Input(shape=(60, 23)) input_data3 = Input(shape=(5, 1)) ``` 这样定义后,你可以将 `input_data1`、`input_data2` 和 `input_data3` 作为模型的输入。然后,你需要对 `concat` 进行一些调整,以确保它与输入张量的形状匹配,代码如下: ``` concat = concatenate([input_data1, input_data2, input_data3], axis=1) ``` 这样,你就可以将 `concat` 作为模型的输入,然后继续定义模型结构。

trainX Y shape is: (4755, 48, 23) (4755, 60, 23) 是输入, (4755, 5, 1)是输出

非常抱歉,我理解错了。在这种情况下,你可以使用以下代码定义模型: ``` input_data1 = Input(shape=(48, 23)) input_data2 = Input(shape=(60, 23)) lstm1 = LSTM(128, return_sequences=True)(input_data1) lstm_out1 = Dense(64, activation='relu')(lstm1) lstm_out1 = Dense(32, activation='tanh')(lstm_out1) lstm_out1 = Dense(16, activation='softmax')(lstm_out1) lstm2 = LSTM(128, return_sequences=True)(input_data2) lstm_out2 = Dense(64, activation='relu')(lstm2) lstm_out2 = Dense(32, activation='tanh')(lstm_out2) lstm_out2 = Dense(16, activation='softmax')(lstm_out2) concat = concatenate([lstm_out1, lstm_out2], axis=1) bidirectional = Bidirectional(LSTM(units=32, return_sequences=True))(concat) dense1 = Dense(units=32)(bidirectional) output_data = Dense(units=1, activation='sigmoid')(dense1) model = Model(inputs=[input_data1, input_data2], outputs=output_data) ``` 这个模型有两个输入层(`input_data1` 和 `input_data2`),分别代表两个时间序列。每个输入层都有一个 LSTM 子层,然后将两个 LSTM 子层的输出进行连接。连接后,我们使用一个双向 LSTM 层和两个密集层来生成模型的输出。模型的输出层是一个具有 sigmoid 激活函数的密集层(因为你的输出形状是 `(4755, 5, 1)`,所以我们使用sigmoid函数)。 你可以根据需要调整模型的超参数和层数,以获得更好的性能。

相关推荐

最新推荐

Android利用shape实现各种简单的形状

主要给大家介绍了关于Android中利用shape实现各种简单的形状的相关资料,文中给出了详细的示例代码供大家参考学习,需要的朋友们下面跟着小编一起来学习学习吧。

pytorch中获取模型input/output shape实例

今天小编就为大家分享一篇pytorch中获取模型input/output shape实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

对numpy中shape的深入理解

今天小编就为大家分享一篇对numpy中shape的深入理解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

android shape的使用及渐变色、分割线、边框、半透明阴影

主要介绍了android shape的使用及渐变色、分割线、边框、半透明阴影,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

基于tf.shape(tensor)和tensor.shape()的区别说明

主要介绍了基于tf.shape(tensor)和tensor.shape()的区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

stc12c5a60s2 例程

stc12c5a60s2 单片机的所有功能的实例,包括SPI、AD、串口、UCOS-II操作系统的应用。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

margin-top: 50%;

margin-top: 50%; 是一种CSS样式代码,用于设置元素的上边距(即与上方元素或父级元素之间的距离)为其父元素高度的50%。 这意味着元素的上边距将等于其父元素高度的50%。例如,如果父元素的高度为100px,则该元素的上边距将为50px。 请注意,这个值只在父元素具有明确的高度(非auto)时才有效。如果父元素的高度是auto,则无法确定元素的上边距。 希望这个解释对你有帮助!如果你还有其他问题,请随时提问。

Android通过全局变量传递数据

在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和访问 除非是Web服务器停止 Android中的全局对象非常类似于Java Web中的Application域 除非是Android应用程序清除内存 否则全局对象将一直可以访问 1 定义一个类继承Application public class MyApp extends Application 2 在AndroidMainfest xml中加入全局变量 android:name " MyApp" 3 在传数据类中获取全局变量Application对象并设置数据 myApp MyApp getApplication ; myApp setName "jack" ; 修改之后的名称 4 在收数据类中接收Application对象 myApp MyApp getApplication ;">在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和 [更多]