请问是如下修改吗 : data1 = Data_1H(data,config.Hx) trainX1,trainX2,_ = data1._slice_multi() data2 = Data_1H(data_y,config.Hx) _ , _, trainY = data2._slice_multi() trainY = np.expand_dims(trainY, axis=-1) # Y 的形状就由(155,5)变成了 (155, 5, 1),可以用于训练和预测模型 print("trainX Y shape is:",trainX1.shape,trainX2.shape,trainY.shape, "Hx=",config.Hx ) if len(trainY.shape) == 1: trainY = trainY.reshape(-1,1) train_data = [(trainX1[i], trainX2[i], trainY[i]) for i in range(trainX1.shape[0])] batch_size = 32 dataset = tf.data.Dataset.from_generator(lambda: iter(train_data), output_types=(tf.float32, tf.float32, tf.float32), output_shapes=((None, trainX1.shape[1]), (None, trainX2.shape[1]), (None, 1))) dataset = dataset.batch(batch_size) # 进行训练 #model = trainModel(trainX1, trainX2 , trainY, config) model = LSTNetAttention(trainX1,trainX2,trainY,config) model.summary() model.compile(optimizer=config.optimizer, loss=config.loss_metric) #model.compile(optimizer=Adam(lr=0.001), loss=config.loss_metric) model.fit([trainX1,trainX2], trainY, epochs=config.epochs, steps_per_epoch=len(train_data) ,batch_size=config.lstm_batch_size, verbose=config.verbose,validation_split=0.2, callbacks=[my_early_stopping]) #=====================================

时间: 2024-04-28 18:26:37 浏览: 11
这段代码主要是用于处理数据并训练模型的。首先对数据进行预处理,使用`Data_1H`类对数据进行处理,得到`trainX1`、`trainX2`和`trainY`。然后对`trainY`进行维度扩展,使其变为`(155, 5, 1)`的形状,方便后续训练和预测模型。接着将数据转化为`tf.data.Dataset`类型,并设置批次大小为`batch_size`。最后使用`LSTNetAttention`模型对数据进行训练,使用`my_early_stopping`回调函数进行早停操作。
相关问题

data1 = Data_1H(data,config.Hx) trainX1,trainX2,_ = data1._slice_multi() data2 = Data_1H(data_y,config.Hx) _ , _, trainY = data2._slice_multi() trainY = np.expand_dims(trainY, axis=-1) # Y 的形状就由(155,5)变成了 (155, 5, 1),可以用于训练和预测模型 print("trainX Y shape is:",trainX1.shape,trainX2.shape,trainY.shape, "Hx=",config.Hx ) if len(trainY.shape) == 1: trainY = trainY.reshape(-1,1) # 进行训练 model = trainModel(trainX1, trainX2 , trainY, config), trainX1, trainX2是数据输入,产生的是3维,第一维是数据总长,请问如何修改为小批量。

你可以按照以下步骤将数据划分为小批量: 1. 将输入数据和标签分别打包为元组,例如: ```python train_data = [(trainX1[i], trainX2[i], trainY[i]) for i in range(trainX1.shape[0])] ``` 2. 使用`tf.data.Dataset.from_generator()`将数据生成器转换为数据集对象,例如: ```python batch_size = 32 dataset = tf.data.Dataset.from_generator(lambda: iter(train_data), output_types=(tf.float32, tf.float32, tf.float32), output_shapes=((None, trainX1.shape[1]), (None, trainX2.shape[1]), (None, 1))) dataset = dataset.batch(batch_size) ``` 这里使用`from_generator()`将数据生成器转换为数据集对象,其中`output_types`和`output_shapes`分别指定了输入数据和标签的类型和形状。然后使用`batch()`将数据集划分为大小为`batch_size`的小批量。 3. 在`model.fit()`中指定`steps_per_epoch`参数,例如: ```python model.fit(dataset, epochs=10, steps_per_epoch=len(train_data) // batch_size) ``` 这里将数据集作为参数传递给`model.fit()`,并指定`steps_per_epoch`参数为`len(train_data) // batch_size`,表示每个epoch需要处理的步数。 通过这种方式,你可以将数据划分为小批量,然后将小批量作为输入进行训练。这样,每次训练时,模型只会处理一个小批量的数据,从而避免了一次性处理大量数据的问题,同时也可以减少内存的消耗。

import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.rea df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan # 重新插入time列 df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) # 线性插值的方法需要单独处理最后一行的数据 data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) writer = pd.E

这段代码主要是对一份空气质量预报基础数据进行处理和插值,具体的解释如下: 1. 导入需要的库和模块: ``` import pandas as pd import numpy as np import os from pprint import pprint from pandas import DataFrame from scipy import interpolate ``` 2. 读取 excel 文件中的数据: ``` data_1_hour_predict_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_hour_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) data_1_day_actual_raw = pd.read_excel('./data/附件1 监测点A空气质量预报基础数据.xlsx' ) ``` 3. 对读取的数据进行处理: ``` df_1_predict = data_1_hour_actual_raw df_1_actual = data_1_day_actual_raw df_1_predict.set_axis( ['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co', 'temperature', 'humidity', 'pressure', 'wind', 'direction'], axis='columns', inplace=True) df_1_actual.set_axis(['time', 'place', 'so2', 'no2', 'pm10', 'pm2.5', 'o3', 'co'], axis='columns', inplace=True) ``` 4. 提取时间列并进行插值: ``` modeltime_df_actual = df_1_actual['time'] modeltime_df_pre = df_1_predict['time'] df_1_actual = df_1_actual.drop(columns=['place', 'time']) df_1_predict = df_1_predict.drop(columns=['place', 'time']) df_1_predict = df_1_predict.replace('—', np.nan) df_1_predict = df_1_predict.astype('float') df_1_predict[df_1_predict < 0] = np.nan df_1_actual.insert(0, 'time', modeltime_df_actual) df_1_predict.insert(0, 'time', modeltime_df_pre) data_1_actual = df_1_actual[0:-3] data_1_predict = df_1_predict data_1_predict.iloc[-1:]['pm10'] = 22.0 data_1_actual_knn = df_1_actual[0:-3] data_1_predict_knn: DataFrame = df_1_predict for indexs in data_1_actual.columns: if indexs == 'time': continue data_1_actual['rownum'] = np.arange(data_1_actual.shape[0]) df_nona = data_1_actual.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_actual[indexs] = f(data_1_actual['rownum']) data_1_actual = data_1_actual.drop(columns=['rownum']) for indexs in data_1_predict.columns: if indexs == 'time': continue data_1_predict['rownum'] = np.arange(data_1_predict.shape[0]) df_nona = data_1_predict.dropna(subset=[indexs]) f = interpolate.interp1d(df_nona['rownum'], df_nona[indexs]) data_1_predict[indexs] = f(data_1_predict['rownum']) data_1_predict = data_1_predict.drop(columns=['rownum']) ``` 5. 最后将处理好的数据写入 excel 文件: ``` writer = pd.ExcelWriter('./data/附件1 监测点A空气质量预报基础数据_preprocessed.xlsx') data_1_predict.to_excel(writer, sheet_name='1小时预测数据', index=False) data_1_predict_knn.to_excel(writer, sheet_name='1小时预测数据_knn', index=False) data_1_actual.to_excel(writer, sheet_name='1天实际数据', index=False) data_1_actual_knn.to_excel(writer, sheet_name='1天实际数据_knn', index=False) writer.save() ``` 总体来说,这段代码主要是对空气质量预报基础数据进行了一些预处理和插值,最终将处理好的数据写入了 excel 文件中。

相关推荐

最新推荐

recommend-type

Allwinner_F1C200s_Datasheet_V1.1.pdf

Allwinner_F1C200s_Datasheet_V1.1.pdf看清楚版本再下载哦,1.1的,为了大家顺利的使用,就贡献下吧。
recommend-type

LPC55S1x_LPC551x Data Sheet中文版.docx

LPC55S1x / LPC551x32位Arm Cortex®-M33, TrustZone, PRINCE, CASPER, 96kb 存储器;256kb闪存,USB HS, Flexcomm接口,CAN FD, 32位计数器/定时器,SCTimer/PWM, PLU, 16位2.0 ADC,比较器,温度传感器,AES, ...
recommend-type

1-DDI0487A_a_2_armv8_arm_arch_reference_manual.pdf

ARMv8体系结构原文,描述了ARM64的寄存器,指令的CPU相关体系结构,可以用于飞腾和鲲鹏CPU的学习
recommend-type

vSwitch_Data_Path_HW_Offload_UM.pdf

This manual describes the proper use of DPDK APIs to efficiently offload a part or all of the vSwitch data path to the device.
recommend-type

string中c_str(),data(),copy(p,n)函数的用法总结

以下是对string中c_str(),data(),copy(p,n)函数的用法进行了详细的介绍,需要的朋友可以过来参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。