请问是如下修改吗 : data1 = Data_1H(data,config.Hx) trainX1,trainX2,_ = data1._slice_multi() data2 = Data_1H(data_y,config.Hx) _ , _, trainY = data2._slice_multi() trainY = np.expand_dims(trainY, axis=-1) # Y 的形状就由(155,5)变成了 (155, 5, 1),可以用于训练和预测模型 print("trainX Y shape is:",trainX1.shape,trainX2.shape,trainY.shape, "Hx=",config.Hx ) if len(trainY.shape) == 1: trainY = trainY.reshape(-1,1) train_data = [(trainX1[i], trainX2[i], trainY[i]) for i in range(trainX1.shape[0])] batch_size = 32 dataset = tf.data.Dataset.from_generator(lambda: iter(train_data), output_types=(tf.float32, tf.float32, tf.float32), output_shapes=((None, trainX1.shape[1]), (None, trainX2.shape[1]), (None, 1))) dataset = dataset.batch(batch_size) # 进行训练 #model = trainModel(trainX1, trainX2 , trainY, config) model = LSTNetAttention(trainX1,trainX2,trainY,config) model.summary() model.compile(optimizer=config.optimizer, loss=config.loss_metric) #model.compile(optimizer=Adam(lr=0.001), loss=config.loss_metric) model.fit([trainX1,trainX2], trainY, epochs=config.epochs, steps_per_epoch=len(train_data) ,batch_size=config.lstm_batch_size, verbose=config.verbose,validation_split=0.2, callbacks=[my_early_stopping]) #=====================================
时间: 2024-04-28 11:26:37 浏览: 143
这段代码主要是用于处理数据并训练模型的。首先对数据进行预处理,使用`Data_1H`类对数据进行处理,得到`trainX1`、`trainX2`和`trainY`。然后对`trainY`进行维度扩展,使其变为`(155, 5, 1)`的形状,方便后续训练和预测模型。接着将数据转化为`tf.data.Dataset`类型,并设置批次大小为`batch_size`。最后使用`LSTNetAttention`模型对数据进行训练,使用`my_early_stopping`回调函数进行早停操作。
相关问题
data1 = Data_1H(data,config.Hx) trainX1,trainX2,_ = data1._slice_multi() data2 = Data_1H(data_y,config.Hx) _ , _, trainY = data2._slice_multi() trainY = np.expand_dims(trainY, axis=-1) # Y 的形状就由(155,5)变成了 (155, 5, 1),可以用于训练和预测模型 print("trainX Y shape is:",trainX1.shape,trainX2.shape,trainY.shape, "Hx=",config.Hx ) if len(trainY.shape) == 1: trainY = trainY.reshape(-1,1) # 进行训练 model = trainModel(trainX1, trainX2 , trainY, config), trainX1, trainX2是数据输入,产生的是3维,第一维是数据总长,请问如何修改为小批量。
你可以按照以下步骤将数据划分为小批量:
1. 将输入数据和标签分别打包为元组,例如:
```python
train_data = [(trainX1[i], trainX2[i], trainY[i]) for i in range(trainX1.shape[0])]
```
2. 使用`tf.data.Dataset.from_generator()`将数据生成器转换为数据集对象,例如:
```python
batch_size = 32
dataset = tf.data.Dataset.from_generator(lambda: iter(train_data),
output_types=(tf.float32, tf.float32, tf.float32),
output_shapes=((None, trainX1.shape[1]),
(None, trainX2.shape[1]),
(None, 1)))
dataset = dataset.batch(batch_size)
```
这里使用`from_generator()`将数据生成器转换为数据集对象,其中`output_types`和`output_shapes`分别指定了输入数据和标签的类型和形状。然后使用`batch()`将数据集划分为大小为`batch_size`的小批量。
3. 在`model.fit()`中指定`steps_per_epoch`参数,例如:
```python
model.fit(dataset, epochs=10, steps_per_epoch=len(train_data) // batch_size)
```
这里将数据集作为参数传递给`model.fit()`,并指定`steps_per_epoch`参数为`len(train_data) // batch_size`,表示每个epoch需要处理的步数。
通过这种方式,你可以将数据划分为小批量,然后将小批量作为输入进行训练。这样,每次训练时,模型只会处理一个小批量的数据,从而避免了一次性处理大量数据的问题,同时也可以减少内存的消耗。
STM32F103C8T6驱动hx711代码
下面是使用STM32F103C8T6驱动hx711的代码示例,其中使用了HAL库:
```
#include "main.h"
#include "stm32f1xx_hal.h"
/* HX711 PIN definition */
#define HX711_DOUT_Pin GPIO_PIN_6
#define HX711_DOUT_GPIO_Port GPIOB
#define HX711_PD_SCK_Pin GPIO_PIN_7
#define HX711_PD_SCK_GPIO_Port GPIOB
/* HX711 Function Prototypes */
void HX711_Init(void);
uint32_t HX711_Read(void);
/* Variables */
uint32_t weight;
/* Main function */
int main(void)
{
/* MCU Configuration */
HAL_Init();
SystemClock_Config();
/* Initialize HX711 */
HX711_Init();
while (1)
{
/* Read weight from HX711 */
weight = HX711_Read();
/* Do something with the weight data */
// ...
}
}
/* HX711 Initialization function */
void HX711_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOB_CLK_ENABLE();
/* Configure HX711 DOUT pin */
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = HX711_DOUT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(HX711_DOUT_GPIO_Port, &GPIO_InitStruct);
/* Configure HX711 PD SCK pin */
GPIO_InitStruct.Pin = HX711_PD_SCK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(HX711_PD_SCK_GPIO_Port, &GPIO_InitStruct);
/* Set HX711 PD SCK pin high */
HAL_GPIO_WritePin(HX711_PD_SCK_GPIO_Port, HX711_PD_SCK_Pin, GPIO_PIN_SET);
/* Wait for HX711 to settle */
HAL_Delay(100);
}
/* HX711 Read function */
uint32_t HX711_Read(void)
{
/* Variables */
uint32_t data = 0;
/* Set HX711 PD SCK pin low */
HAL_GPIO_WritePin(HX711_PD_SCK_GPIO_Port, HX711_PD_SCK_Pin, GPIO_PIN_RESET);
/* Wait for HX711 to settle */
HAL_Delay(1);
/* Read data from HX711 */
for (int i = 0; i < 24; i++)
{
HAL_GPIO_WritePin(HX711_PD_SCK_GPIO_Port, HX711_PD_SCK_Pin, GPIO_PIN_SET);
data = data << 1;
data |= HAL_GPIO_ReadPin(HX711_DOUT_GPIO_Port, HX711_DOUT_Pin);
HAL_GPIO_WritePin(HX711_PD_SCK_GPIO_Port, HX711_PD_SCK_Pin, GPIO_PIN_RESET);
}
/* Set HX711 PD SCK pin high */
HAL_GPIO_WritePin(HX711_PD_SCK_GPIO_Port, HX711_PD_SCK_Pin, GPIO_PIN_SET);
/* Wait for HX711 to settle */
HAL_Delay(1);
/* Check if data is negative */
if (data & 0x800000)
{
data = ~data + 1;
}
return data;
}
/* System Clock Configuration */
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
```
需要注意的是,该代码只是一个简单的示例,实际使用中还需要根据具体的硬件电路和HX711的工作原理进行相应的修改和调整。如果您不熟悉HX711的工作原理和使用方法,建议先阅读HX711的相关资料和文档。
阅读全文