用python代价写出NLTK对obama.txt语料库进行对应的分词和词频统计,再对布朗语料库进行词性和句法分析。
时间: 2024-02-03 11:14:03 浏览: 101
好的,以下是代码实现:
首先需要安装NLTK库,可以使用以下命令进行安装:
```
pip install nltk
```
然后导入需要使用的库:
```python
import nltk
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from nltk.corpus import brown
```
对于obama.txt语料库,我们可以先读取文件内容,并对其进行分词:
```python
with open('obama.txt', 'r') as file:
obama_text = file.read()
obama_tokens = word_tokenize(obama_text)
```
接着,我们可以使用FreqDist函数对分词后的结果进行词频统计,并输出前10个出现频率最高的单词:
```python
fdist = FreqDist(obama_tokens)
print(fdist.most_common(10))
```
对于布朗语料库,我们可以首先进行词性标注和句法分析:
```python
brown_tagged_sents = brown.tagged_sents()
brown_sents = brown.sents()
unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
brown_tagged_words = unigram_tagger.tag(brown_sents[0])
grammar = nltk.CFG.fromstring("""
S -> NP VP
PP -> P NP
NP -> Det N | Det N PP | 'I'
VP -> V NP | VP PP
Det -> 'an' | 'my'
N -> 'elephant' | 'pajamas'
V -> 'shot'
P -> 'in'
""")
parser = nltk.ChartParser(grammar)
trees = parser.parse(brown_sents[0])
for tree in trees:
print(tree)
```
以上代码实现了对布朗语料库第一句话进行词性标注和句法分析,其中使用了UnigramTagger进行词性标注,使用CFG和ChartParser进行句法分析。
完整代码如下:
```python
import nltk
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist
from nltk.corpus import brown
# 分词和词频统计
with open('obama.txt', 'r') as file:
obama_text = file.read()
obama_tokens = word_tokenize(obama_text)
fdist = FreqDist(obama_tokens)
print(fdist.most_common(10))
# 词性标注和句法分析
brown_tagged_sents = brown.tagged_sents()
brown_sents = brown.sents()
unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
brown_tagged_words = unigram_tagger.tag(brown_sents[0])
grammar = nltk.CFG.fromstring("""
S -> NP VP
PP -> P NP
NP -> Det N | Det N PP | 'I'
VP -> V NP | VP PP
Det -> 'an' | 'my'
N -> 'elephant' | 'pajamas'
V -> 'shot'
P -> 'in'
""")
parser = nltk.ChartParser(grammar)
trees = parser.parse(brown_sents[0])
for tree in trees:
print(tree)
```
阅读全文