设有一组关键字{29,01,13,15,56,20,87,27,69,9,10,74},散列函数为:H(key)=key % 17,采用线性测方法解决冲突。试在0到18的散列地址空间中对该关键字序列构造散列表,并计算成功查找的平均查找度。手写过程

时间: 2023-08-31 18:20:11 浏览: 202
### 回答1: 首先构造一个长度为18的散列表,初始时所有位置均为空。 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 接下来对每个关键字进行散列,计算其散列地址。由于散列函数为 H(key)=key % 17,因此: - 29 % 17 = 12 - 01 % 17 = 1 - 13 % 17 = 13 - 15 % 17 = 15 - 56 % 17 = 5 - 20 % 17 = 3 - 87 % 17 = 4 - 27 % 17 = 10 - 69 % 17 = 4 - 9 % 17 = 9 - 10 % 17 = 10 - 74 % 17 = 8 然后按照线性探测法的规则,将每个关键字插入到其散列地址处,如果该位置已经被占用,则依次往后探测,直到找到一个空闲位置为止。具体过程如下: - 29 -> 12 - 01 -> 1 - 13 -> 13 - 15 -> 15 - 56 -> 5 - 20 -> 3 - 87 -> 4 - 27 -> 10 - 69 -> 4 (冲突,线性探测) - 9 -> 9 - 10 -> 10 - 74 -> 8 最终得到的散列表如下所示: | 9 | 1 | 20 | 87 | 69 | 56 | 13 | 74 | 15 | 29 | 10 | 27 | 12 | | | 3 | | 4 | 其中,每个位置上的数字表示该位置存放的关键字,空位置用竖线“|”表示。 计算平均查找度的公式为:ASL = (成功查找时的平均查找长度 + 不成功查找时的平均查找长度) / 总记录数。 假设我们要查找关键字 20,由于 H(20) = 3,因此首先查找散列表中下标为 3 的位置。发现该位置存放的是关键字 20,因此查找成功,平均查找长度为 1。 对于不成功查找,可以假设要查找的关键字在散列表中不存在,此时需要从散列表中的每个位置依次开始搜索,直到找到一个空位置或搜索完整个散列表。由于这里的散列表长度比较小,我们可以手动模拟出所有可能的情况,并计算平均查找长度。不妨假设要查找的关键字为 99,那么所有可能的情况如下所示: 1. 0 -> 99 (ASL = 1) 2. 1 -> 99 (ASL = 2) 3. 2 -> 99 (ASL = 3) 4. 3 -> 空 (ASL = 4) 5. 4 -> 99 (ASL = 5) 6. 5 -> 99 (ASL = 6) 7. 6 -> 99 (ASL = 7) 8. 7 -> 99 (ASL = 8) 9. 8 -> 99 (ASL = 9) 10. 9 -> 空 (ASL = 10) 11. 10 -> 99 (ASL = 11) 12. 11 -> 99 (ASL = 12) 13. 12 -> 99 (ASL = 13) 14. 13 -> 99 (ASL = 14) 15. 14 -> 99 (ASL = 15) 16. 15 -> 99 (ASL = 16) 17. 16 -> 空 (ASL = 17) 根据公式,成功查找时的平均查找长度为 1,不成功查找时的平均查找长度为 (1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17) / 18 = 9。 因此,平均查找度为 (1+9) / 12 ≈ 0.83,即成功查找一次需要搜索 0.83 个位置。 ### 回答2: 根据散列函数H(key) = key % 17,我们需要将关键字序列{29,01,13,15,56,20,87,27,69,9,10,74}映射到0到18的散列地址空间中。 首先,我们创建一个长度为19的散列表,初始化所有的位置为空。 然后,根据散列函数计算每个关键字的散列地址并插入到散列表中: 散列地址 = 关键字 % 17 29的散列地址 = 29 % 17 = 12,插入到地址为12的位置 01的散列地址 = 01 % 17 = 1,插入到地址为1的位置 13的散列地址 = 13 % 17 = 13,插入到地址为13的位置 15的散列地址 = 15 % 17 = 15,插入到地址为15的位置 ... 依次类推 如果某个位置已经被占用,采用线性探测方法解决冲突,即往后寻找下一个空闲位置。 最终,散列表中的关键字分布如下: 0:空 1:01 2:15 3:15 4:空 5:56 6:20 7:空 8:空 9:69 10:10 11:空 12:29 13:13 14:空 15:27 16:74 17:87 18:空 计算成功查找的平均查找度,需要统计每个关键字在查找时的查找次数,并求平均值。 关键字29的查找次数为1 关键字01的查找次数为1 关键字13的查找次数为1 关键字15的查找次数为1 关键字56的查找次数为1 关键字20的查找次数为1 关键字87的查找次数为1 关键字27的查找次数为1 关键字69的查找次数为1 关键字9的查找次数为1 关键字10的查找次数为1 关键字74的查找次数为1 因此,成功查找的平均查找度为1。 需要注意的是,由于散列函数和冲突解决方法的选择,该散列表具有较低的冲突率。若冲突较多,则平均查找度可能会有所提高。 ### 回答3: 首先,我们需要创建一个大小为19的散列表(0到18的散列地址空间)。然后,按照散列函数H(key)=key % 17,将关键字序列依次插入到散列表中。 插入第一个关键字29: H(29) = 29 % 17 = 12 散列表:[ , , , , , , , , , , , , 29, , , , , , ] 插入第二个关键字01: H(01) = 01 % 17 = 1 散列表:[ , 01, , , , , , , , , , , 29, , , , , , ] 插入第三个关键字13: H(13) = 13 % 17 = 13 散列表:[ , 01, , , , , , , , , , , 29, 13, , , , , ] 插入第四个关键字15: H(15) = 15 % 17 = 15 散列表:[ , 01, , , , , , , , , , , 29, 13, 15, , , , ] 插入第五个关键字56: H(56) = 56 % 17 = 5 散列表:[ , 01, , , , 56, , , , , , , 29, 13, 15, , , , ] 插入第六个关键字20: H(20) = 20 % 17 = 3 散列表:[ , 01, , 20, , 56, , , , , , , 29, 13, 15, , , , ] 插入第七个关键字87: H(87) = 87 % 17 = 9 散列表:[ , 01, , 20, , 56, , , , 87, , , 29, 13, 15, , , , ] 插入第八个关键字27: H(27) = 27 % 17 = 10 散列表:[ , 01, , 20, , 56, , , , 87, 27, , 29, 13, 15, , , , ] 插入第九个关键字69: H(69) = 69 % 17 = 4 散列表:[ , 01, , 20, 69, 56, , , , 87, 27, , 29, 13, 15, , , , ] 插入第十个关键字9: H(9) = 9 % 17 = 9 (发生冲突) 线性探测法解决冲突,尝试下一个位置: H(9) + 1 = 10 散列表:[ , 01, , 20, 69, 56, , , , 87, 27, 9, 29, 13, 15, , , , ] 插入第十一个关键字10: H(10) = 10 % 17 = 10 (发生冲突) 线性探测法解决冲突,尝试下一个位置: H(10) + 1 = 11 散列表:[ , 01, , 20, 69, 56, , , , 87, 27, 9, 10, 29, 13, 15, , , , ] 插入第十二个关键字74: H(74) = 74 % 17 = 8 散列表:[ , 01, , 20, 69, 56, , , 74, 87, 27, 9, 10, 29, 13, 15, , , , ] 最终得到的散列表为: [ , 01, , 20, 69, 56, , , 74, 87, 27, 9, 10, 29, 13, 15, , , , ] 成功查找的平均查找度计算方法如下: 查找度 = (查找成功时的比较次数 + 1) / 2 总的查找度 = 所有关键字的查找度之和 计算关键字29的查找度:(1+1)/2 = 1 计算关键字01的查找度:(1+1)/2 = 1 计算关键字13的查找度:(1+1)/2 = 1 计算关键字15的查找度:(1+1)/2 = 1 计算关键字56的查找度:(1+1)/2 = 1 计算关键字20的查找度:(1+1)/2 = 1 计算关键字87的查找度:(1+1)/2 = 1 计算关键字27的查找度:(1+1)/2 = 1 计算关键字69的查找度:(1+1)/2 = 1 计算关键字9的查找度:(2+1)/2 = 1.5 计算关键字10的查找度:(2+1)/2 = 1.5 计算关键字74的查找度:(1+1)/2 = 1 总的查找度 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.5 + 1.5 + 1 = 13 成功查找的平均查找度 = 总的查找度 / 插入关键字的数量 = 13 / 12 = 1.083 因此,成功查找的平均查找度为1.083。
阅读全文

相关推荐

最新推荐

recommend-type

基于Java的家庭理财系统设计与开发-金融管理-家庭财产管理-实用性强

内容概要:文章探讨了互联网时代的背景下开发一个实用的家庭理财系统的重要性。文中分析了国内外家庭理财的现状及存在的问题,阐述了开发此系统的目的——对家庭财产进行一体化管理,提供统计、预测功能。系统涵盖了家庭成员管理、用户认证管理、账单管理等六大功能模块,能够满足用户多方面查询及统计需求,并保证数据的安全性与完整性。设计中运用了先进的技术栈如SSM框架(Spring、SpringMVC、Mybatis),并采用MVC设计模式确保软件结构合理高效。 适用人群:对于希望科学地管理和规划个人或家庭财务的普通民众;从事财务管理相关专业的学生;有兴趣于家政学、经济学等领域研究的专业人士。 使用场景及目标:适用于日常家庭财务管理的各个场景,帮助用户更好地了解自己的消费习惯和资金状况;为目标客户提供一套稳定可靠的解决方案,助力家庭财富增长。 其他说明:文章还包括系统设计的具体方法与技术选型的理由,以及项目实施过程中的难点讨论。对于开发者而言,不仅提供了详尽的技术指南,还强调了用户体验的重要性。
recommend-type

弹性盒子Flexbox布局.docx

弹性盒子Flexbox布局.docx
recommend-type

网络财务系统 SSM毕业设计 附带论文.zip

网络财务系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
recommend-type

联想电脑的bios设置

联想电脑的bios设置、图文都有
recommend-type

1_教务处关于云南师范大学2024年大学生科研训练基金项目立项申报工作的通知 (1).zip

1_教务处关于云南师范大学2024年大学生科研训练基金项目立项申报工作的通知 (1).zip
recommend-type

探索数据转换实验平台在设备装置中的应用

资源摘要信息:"一种数据转换实验平台" 数据转换实验平台是一种专门用于实验和研究数据转换技术的设备装置,它能够帮助研究者或技术人员在模拟或实际的工作环境中测试和优化数据转换过程。数据转换是指将数据从一种格式、类型或系统转换为另一种,这个过程在信息科技领域中极其重要,尤其是在涉及不同系统集成、数据迁移、数据备份与恢复、以及数据分析等场景中。 在深入探讨一种数据转换实验平台之前,有必要先了解数据转换的基本概念。数据转换通常包括以下几个方面: 1. 数据格式转换:将数据从一种格式转换为另一种,比如将文档从PDF格式转换为Word格式,或者将音频文件从MP3格式转换为WAV格式。 2. 数据类型转换:涉及数据类型的改变,例如将字符串转换为整数,或者将日期时间格式从一种标准转换为另一种。 3. 系统间数据转换:在不同的计算机系统或软件平台之间进行数据交换时,往往需要将数据从一个系统的数据结构转换为另一个系统的数据结构。 4. 数据编码转换:涉及到数据的字符编码或编码格式的变化,例如从UTF-8编码转换为GBK编码。 针对这些不同的转换需求,一种数据转换实验平台应具备以下特点和功能: 1. 支持多种数据格式:实验平台应支持广泛的数据格式,包括但不限于文本、图像、音频、视频、数据库文件等。 2. 可配置的转换规则:用户可以根据需要定义和修改数据转换的规则,包括正则表达式、映射表、函数脚本等。 3. 高度兼容性:平台需要兼容不同的操作系统和硬件平台,确保数据转换的可行性。 4. 实时监控与日志记录:实验平台应提供实时数据转换监控界面,并记录转换过程中的关键信息,便于调试和分析。 5. 测试与验证机制:提供数据校验工具,确保转换后的数据完整性和准确性。 6. 用户友好界面:为了方便非专业人员使用,平台应提供简洁直观的操作界面,降低使用门槛。 7. 强大的扩展性:平台设计时应考虑到未来可能的技术更新或格式标准变更,需要具备良好的可扩展性。 具体到所给文件中的"一种数据转换实验平台.pdf",它应该是一份详细描述该实验平台的设计理念、架构、实现方法、功能特性以及使用案例等内容的文档。文档中可能会包含以下几个方面的详细信息: - 实验平台的设计背景与目的:解释为什么需要这样一个数据转换实验平台,以及它预期解决的问题。 - 系统架构和技术选型:介绍实验平台的系统架构设计,包括软件架构、硬件配置以及所用技术栈。 - 核心功能与工作流程:详细说明平台的核心功能模块,以及数据转换的工作流程。 - 使用案例与操作手册:提供实际使用场景下的案例分析,以及用户如何操作该平台的步骤说明。 - 测试结果与效能分析:展示平台在实际运行中的测试结果,包括性能测试、稳定性测试等,并进行效能分析。 - 问题解决方案与未来展望:讨论在开发和使用过程中遇到的问题及其解决方案,以及对未来技术发展趋势的展望。 通过这份文档,开发者、测试工程师以及研究人员可以获得对数据转换实验平台的深入理解和实用指导,这对于产品的设计、开发和应用都具有重要价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

ggflags包的国际化问题:多语言标签处理与显示的权威指南

![ggflags包的国际化问题:多语言标签处理与显示的权威指南](https://www.verbolabs.com/wp-content/uploads/2022/11/Benefits-of-Software-Localization-1024x576.png) # 1. ggflags包介绍及国际化问题概述 在当今多元化的互联网世界中,提供一个多语言的应用界面已经成为了国际化软件开发的基础。ggflags包作为Go语言中处理多语言标签的热门工具,不仅简化了国际化流程,还提高了软件的可扩展性和维护性。本章将介绍ggflags包的基础知识,并概述国际化问题的背景与重要性。 ## 1.1
recommend-type

如何使用MATLAB实现电力系统潮流计算中的节点导纳矩阵构建和阻抗矩阵转换,并解释这两种矩阵在潮流计算中的作用和差异?

在电力系统的潮流计算中,MATLAB提供了一个强大的平台来构建节点导纳矩阵和进行阻抗矩阵转换,这对于确保计算的准确性和效率至关重要。首先,节点导纳矩阵是电力系统潮流计算的基础,它表示系统中所有节点之间的电气关系。在MATLAB中,可以通过定义各支路的导纳值并将它们组合成矩阵来构建节点导纳矩阵。具体操作包括建立各节点的自导纳和互导纳,以及考虑变压器分接头和线路的参数等因素。 参考资源链接:[电力系统潮流计算:MATLAB程序设计解析](https://wenku.csdn.net/doc/89x0jbvyav?spm=1055.2569.3001.10343) 接下来,阻抗矩阵转换是
recommend-type

使用git-log-to-tikz.py将Git日志转换为TIKZ图形

资源摘要信息:"git-log-to-tikz.py 是一个使用 Python 编写的脚本工具,它能够从 Git 版本控制系统中的存储库生成用于 TeX 文档的 TIkZ 图。TIkZ 是一个用于在 LaTeX 文档中创建图形的包,它是 pgf(portable graphics format)库的前端,广泛用于创建高质量的矢量图形,尤其适合绘制流程图、树状图、网络图等。 此脚本基于 Michael Hauspie 的原始作品进行了更新和重写。它利用了 Jinja2 模板引擎来处理模板逻辑,这使得脚本更加灵活,易于对输出的 TeX 代码进行个性化定制。通过使用 Jinja2,脚本可以接受参数,并根据参数输出不同的图形样式。 在使用该脚本时,用户可以通过命令行参数指定要分析的 Git 分支。脚本会从当前 Git 存储库中提取所指定分支的提交历史,并将其转换为一个TIkZ图形。默认情况下,脚本会将每个提交作为 TIkZ 的一个节点绘制,同时显示提交间的父子关系,形成一个树状结构。 描述中提到的命令行示例: ```bash git-log-to-tikz.py master feature-branch > repository-snapshot.tex ``` 这个命令会将 master 分支和 feature-branch 分支的提交日志状态输出到名为 'repository-snapshot.tex' 的文件中。输出的 TeX 代码使用TIkZ包定义了一个 tikzpicture 环境,该环境可以被 LaTeX 编译器处理,并在最终生成的文档中渲染出相应的图形。在这个例子中,master 分支被用作主分支,所有回溯到版本库根的提交都会包含在生成的图形中,而并行分支上的提交则会根据它们的时间顺序交错显示。 脚本还提供了一个可选参数 `--maketest`,通过该参数可以执行额外的测试流程,但具体的使用方法和效果在描述中没有详细说明。一般情况下,使用这个参数是为了验证脚本的功能或对脚本进行测试。 此外,Makefile 中提供了调用此脚本的示例,说明了如何在自动化构建过程中集成该脚本,以便于快速生成所需的 TeX 图形文件。 此脚本的更新版本允许用户通过少量参数对生成的图形进行控制,包括但不限于图形的大小、颜色、标签等。这为用户提供了更高的自定义空间,以适应不同的文档需求和审美标准。 在使用 git-log-to-tikz.py 脚本时,用户需要具备一定的 Python 编程知识,以理解和操作 Jinja2 模板,并且需要熟悉 Git 和 TIkZ 的基本使用方法。对于那些不熟悉命令行操作的用户,可能需要一些基础的学习来熟练掌握该脚本的使用。 最后,虽然文件名称列表中只列出了 'git-log-to-tikz.py-master' 这一个文件,但根据描述,该脚本应能支持检查任意数量的分支,并且在输出的 TeX 文件中使用 `tikzset` 宏来轻松地重新设置图形的样式。这表明脚本具有较好的扩展性和灵活性。"