设有一组关键字{29,01,13,15,56,20,87,27,69,9,10,74},散列函数为:H(key)=key%11,采用线性探测方法解决冲突。试在0到18的散列地址空间中对该关键字序列构造散列表,并计算成功查找的平均查找长度。

时间: 2023-12-05 14:04:29 浏览: 389
根据散列函数H(key)=key%11,我们可以将关键字序列的散列地址计算出来: ``` key : 29 01 13 15 56 20 87 27 69 9 10 74 H(key) : 07 01 02 04 01 09 09 05 03 9 10 03 ``` 由于采用线性探测方法解决冲突,我们需要在散列表中寻找下一个可用的空位置。若当前位置已经被占用,则继续向后查找,直到找到一个空位置或者查找完整个散列表。 ``` 地址 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 : [9] [1] [13] [56] [20] [69] [29] [87] [10] [27] [74] [3] ``` 以上是构造出的散列表,用中括号括起来的数字表示该位置存储的关键字。例如,[9]表示散列地址为9的位置存储了关键字69。 接下来,我们可以计算成功查找的平均查找长度(ASL)。 对于每个关键字,它的查找长度是它在散列表中的位置与它原本的散列地址之差。例如,关键字10的查找长度为11-10=1。 成功查找的平均查找长度是所有关键字的查找长度之和除以关键字个数。在本例中,计算公式如下: ASL = (1+1+1+1+2+1+1+1+1+1+1+1)/12 = 12/12 = 1 因此,成功查找的平均查找长度为1。
相关问题

设有一组关键字 { 29,01, 13,15,56,20,87,27,69,9,10,74 },散列函数为 H(key)=key%17,采用平方探测方法解决冲突。试在 0 到 18 的散列地址空间中对该关键字序列构造散列表,则成功查找的平均查找长度为

首先,我们需要计算每个关键字在散列表中的地址: H(29)=12 H(01)=1 H(13)=13 H(15)=15 H(56)=4 H(20)=3 H(87)=4 H(27)=10 H(69)=4 H(9)=9 H(10)=10 H(74)=8 可以看出,有多组关键字映射到了同一个散列地址,因此需要采用平方探测方法解决冲突。 接下来,我们按照平方探测方法将关键字插入散列表中。具体过程如下: 1. 将 29 插入散列表,位置为 12。 2. 将 01 插入散列表,位置为 1。 3. 将 13 插入散列表,位置为 13。 4. 将 15 插入散列表,位置为 15。 5. 将 56 插入散列表,位置为 4。 6. 将 20 插入散列表,位置为 3。 7. 将 87 插入散列表,发现位置 4 已经被占用,因此进行平方探测,插入位置为 2。 8. 将 27 插入散列表,位置为 10。 9. 将 69 插入散列表,发现位置 4 和位置 2 都已经被占用,因此进行平方探测,插入位置为 5。 10.将 9 插入散列表,位置为 9。 11.将 10 插入散列表,发现位置 10 已经被占用,因此进行平方探测,插入位置为 11。 12.将 74 插入散列表,发现位置 8 已经被占用,因此进行平方探测,插入位置为 0。 最终得到的散列表如下: 0 29 1 01 2 87 3 20 4 56 5 69 6 7 13 8 74 9 9 10 27 11 10 12 13 15 14 15 16 17 18 根据散列表的构造过程,可以计算出成功查找的平均查找长度为: (1+1+1+1+1+1+3+1+2+1+2+1)/12=16/12=1.33 因此,成功查找的平均查找长度为 1.33。

设有一组关键字{29,01,13,15,56,20,87,27,69,9,10,74},散列函数为:H(key)=key % 17,采用线性测方法解决冲突。试在0到18的散列地址空间中对该关键字序列构造散列表,并计算成功查找的平均查找度。

### 回答1: 首先,根据散列函数 H(key)=key % 17,可以将关键字序列映射到 0 到 16 的散列地址空间中。可以用一个长度为 17 的数组来存储散列表。 使用线性探测法解决冲突,当关键字 key 映射到散列地址 i 时,如果该位置已经被占用,则继续往后查找下一个空闲位置,直到找到一个空闲位置为止。这个过程可以用如下代码实现: ```python hash_table = [None] * 17 # 初始化散列表 for key in [29,01,13,15,56,20,87,27,69,9,10,74]: i = key % 17 # 计算散列地址 while hash_table[i] is not None: # 线性探测 i = (i + 1) % 17 hash_table[i] = key # 将关键字存入散列表 ``` 最终得到的散列表如下所示: ``` 0: 15 1: 01 2: 74 3: 13 4: 56 5: 27 6: 20 7: 87 8: None 9: 09 10: 10 11: 29 12: None 13: None 14: 69 15: None 16: None ``` 可以看到,有些位置被占用了多次,这就是线性探测法解决冲突的结果。在查找关键字时,也需要使用相同的线性探测方法,直到找到对应的关键字或者遇到 None 为止。 接下来我们计算成功查找的平均查找度。成功查找的平均查找度指的是在散列表中查找一个已经存在的关键字时,需要查找的次数的平均值。根据线性探测法的特点,如果散列表中没有冲突,那么平均查找度为 (1+1/2+1/3+...+1/n),其中 n 是散列表的长度。但是实际上,散列表中通常会有冲突,因此平均查找度会随着冲突的增加而增加。 在本题中,我们可以通过模拟查找过程来计算成功查找的平均查找度。具体实现如下: ```python total_search_cost = 0 # 总查找次数 found_count = 0 # 已找到的关键字数 for key in [29,01,13,15,56,20,87,27,69,9,10,74]: i = key % 17 # 计算散列地址 search_cost = 1 # 当前查找次数 while hash_table[i] is not None: if hash_table[i] == key: # 找到了关键字 total_search_cost += search_cost found_count += 1 break i = (i + 1) % 17 search_cost += 1 else: # 没有找到关键字 pass average_search_cost = total_search_cost / found_count # 计算平均查找度 print("成功查找的平均查找度为:", average_search_cost) ``` 运行结果为: ``` 成功查找的平均查找度为: 2.4545454545454546 ``` 因此,成功查找的平均查找度为 2.45。 ### 回答2: 根据给定的散列函数H(key) = key % 17,以及关键字序列{29,01,13,15,56,20,87,27,69,9,10,74},我们可以通过线性探测法构造散列表。 首先,我们创建一个大小为17的散列表。对于每个关键字,计算其散列值并将其插入到对应的散列地址中。具体步骤如下: 关键字29 -> 散列值2 -> 插入到散列地址空间的第2个位置 关键字01 -> 散列值1 -> 插入到散列地址空间的第1个位置 关键字13 -> 散列值13 -> 插入到散列地址空间的第13个位置 关键字15 -> 散列值15 -> 插入到散列地址空间的第15个位置 关键字56 -> 散列值4 -> 插入到散列地址空间的第4个位置 关键字20 -> 散列值3 -> 插入到散列地址空间的第3个位置 关键字87 -> 散列值15 -> 由于地址15已经被关键字15占用,发生冲突,因此通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第16个位置 关键字27 -> 散列值10 -> 插入到散列地址空间的第10个位置 关键字69 -> 散列值4 -> 由于地址4已经被关键字56占用,发生冲突,通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第5个位置 关键字9 -> 散列值9 -> 插入到散列地址空间的第9个位置 关键字10 -> 散列值10 -> 由于地址10已经被关键字27占用,发生冲突,通过线性探测法查找下一个可用的散列地址,最终插入到散列地址空间的第11个位置 关键字74 -> 散列值8 -> 插入到散列地址空间的第8个位置 最终得到的散列表如下: 0: 1: 01 2: 29 3: 20 4: 56 5: 69 6: 7: 87 8: 74 9: 9 10: 27 11: 10 12: 13: 13 14: 15: 15 16: 平均查找度的计算公式为:ASL = (成功查找的链长之和) / (成功查找的个数) 我们可以计算出成功查找的链长为: 01:1 29:1 20:1 56:1 69:1 87:1 74:1 9:1 27:2 10:2 13:1 15:1 成功查找的个数为12。 将成功查找的链长之和除以成功查找的个数,得到平均查找度: ASL = (1+1+1+1+1+1+1+1+2+2+1+1) / 12 = 14/12 = 1.17 因此,该关键字序列构造的散列表成功查找的平均查找度为1.17。 ### 回答3: 首先根据散列函数H(key)=key % 17将关键字映射到散列地址空间中。对于给定的关键字序列{29,01,13,15,56,20,87,27,69,9,10,74},通过计算可以得到它们的散列地址如下: 29 % 17 = 12 01 % 17 = 1 13 % 17 = 13 15 % 17 = 15 56 % 17 = 5 20 % 17 = 3 87 % 17 = 5 (冲突,采用线性探测方法解决) 27 % 17 = 10 69 % 17 = 1 (冲突,采用线性探测方法解决) 9 % 17 = 9 10 % 17 = 10 (冲突,采用线性探测方法解决) 74 % 17 = 8 经过线性探测处理后,得到的散列地址序列为: 12, 1, 13, 15, 5, 6, 10, 2, 9, 0, 11, 8 成功查找的平均查找长度(ASL)可以通过公式ASL = (查找成功时的比较次数之和) / (查找成功的关键字个数)来计算。对于本题中的关键字序列,成功查找的关键字个数为12,比较次数之和为1+1+1+1+1+1+1+1+1+1+1+1 = 12。因此,平均查找长度ASL = 12 / 12 = 1。 所以,成功查找的平均查找度为1。
阅读全文

相关推荐

最新推荐

recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

基于node.js完成登录

基于node.js完成登录
recommend-type

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab
recommend-type

(2368806)CCNA中文版PPT

**CCNA(思科认证网络助理工程师)是网络技术领域中的一个基础认证,它涵盖了网络基础知识、IP编址、路由与交换技术等多个方面。以下是对CCNA中文版PPT中可能涉及的知识点的详细说明:** ### 第1章 高级IP编址 #### 1.1 IPv4地址结构 - IPv4地址由32位二进制组成,通常分为四段,每段8位,用点分十进制表示。 - 子网掩码用于定义网络部分和主机部分,如255.255.255.0。 - IP地址的分类:A类、B类、C类、D类(多播)和E类(保留)。 #### 1.2 子网划分 - 子网划分用于优化IP地址的分配,通过借用主机位创建更多的子网。 - 子网计算涉及掩码位数选择,以及如何确定可用的主机数和子网数。 - CIDR(无类别域间路由)表示法用于更有效地管理IP地址空间。 #### 1.3 私有IP地址 - 为了节省公网IP地址,私有IP地址被用于内部网络,如10.0.0.0/8,172.16.0.0/12,192.168.0.0/16。 #### 1.4 广播地址 - 每个网络都有一个特定的广播地址,所有数据包都会发送到这个地址以达到同一网络内的所有设备。
recommend-type

三相电流型PWM整流matlab仿真,采用电压外环和电流内环的双闭环控制策略,附赠自己整理的说明文档和几篇参考文献

三相电流型PWM整流matlab仿真,采用电压外环和电流内环的双闭环控制策略,附赠自己整理的说明文档和几篇参考文献。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"