但是我已经声明过了 class satDataSet(data.Dataset): def __init__(self,root,filetypefile,transform=None): super(satDataSet,self).__init__() self.root = root self.files = [] self.transforms = transform df = pd.read_csv(filetypefile,names=['filename','satType']) for adf in df.values: dat_file = os.path.join(self.root,r"%s" % adf[0]) typename = int("%d" % adf[1]) self.files.append({ "datFile":dat_file, "typename":typename}) def __len__(self): return len(self.files) # 返回数据集的长度 def __getitem__(self, index): ##一张图像一张图像的读取,并处理,即三维的 datafiles = self.files[index] label = datafiles["typename"] #satdata = torch.from_numpy(np.load(datafiles["datFile"])["sat"]) satdata = np.load(datafiles["datFile"])["sat"] satdata = np.transpose(satdata, (1, 2, 0)) #print("satdata.shape",satdata.shape) ## 将数据纬度转化成(100, 101, 19)将通道数放在最后 # 将 NumPy 数组转换为 PIL 图像对象 #satdata = Image.fromarray(satdata) satdata = preprocess_data(satdata,opt) satdata = torch.from_numpy(satdata.transpose((2, 0, 1))) # 转换为 PyTorch 张量 label = torch.from_numpy(np.array([label])) return satdata,label

时间: 2024-04-18 16:27:32 浏览: 159
根据你提供的代码,你定义了一个名为satDataSet` 的类,该类继承自 `data.Dataset`。这是一个自定义的数据集类,用于加载和处理卫星图像数据集。 在这个自定义数据集类中,你实现了 `__init__`、`__len__` 和 `__getitem__` 方法。其中,`__init__` 方法初始化了数据集的根目录、文件列表和转换函数。`__len__` 方法返回了数据集的长度,即文件列表的长度。`__getitem__` 方法根据给定的索引,从文件列表中获取对应的文件名、标签,并进行相应的数据处理和转换操作。 这样,通过实现这些方法,你可以使用这个自定义数据集类来创建数据加载器,并在训练过程中迭代地获取样本数据。 请注意,这个自定义数据集类并不是 Python 的内置类或函数,而是你根据 `data.Dataset` 类进行的自定义实现。在使用时需要确保导入正确的模块,并按照正确的方式调用和使用该类。
相关问题

""" This code is based on the Torchvision repository, which was licensed under the BSD 3-Clause. """ import os import pickle import sys import numpy as np import torch from PIL import Image from torch.utils.data import Dataset from utils.mypath import MyPath from torchvision.datasets.utils import check_integrity, download_and_extract_archive class simclr_c10(Dataset): base_folder = 'D:/wjd/simclr_c10' filename = "simclr_c10" def __init__(self, root=MyPath.db_root_dir('wjd/simclr_c10/'), train=True, transform=None, download=False): super('wjd/simclr_c10/', self).__init__() self.data = None self.root = root self.transform = transform self.train = train # training set or test set self.classes = ['Al', 'Ag', 'Au', 'Cu', 'W', 'V', 'Ta', 'Mo'] def __getitem__(self, index): """ Args: index (int): Index Returns: dict: {'image': image, 'target': index of target class, 'meta': dict} """ img, target = self.data[index], self.targets[index] img_size = (img.shape[0], img.shape[1]) img = Image.fromarray(img) class_name = self.classes[target] if self.transform is not None: img = self.transform(img) out = {'image': img, 'target': target, 'meta': {'im_size': img_size, 'index': index, 'class_name': class_name}} return out def get_image(self, index): img = self.data[index] return img def __len__(self): return len(self.data) def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") return outside function,这段代码正确吗

这段代码有一些问题: 1. `super('wjd/simclr_c10/', self).__init__()` 这句话不正确,应该是 `super(simclr_c10, self).__init__()` 2. `self.targets` 在代码中没有定义,需要在 `__init__` 函数中将其定义并初始化 3. `return outside function` 这句话不应该出现在类定义中,需要将其删除 4. 另外,`check_integrity` 和 `download_and_extract_archive` 函数在代码中没有使用,可以删除 修正后的代码如下所示: ``` import os import pickle import sys import numpy as np import torch from PIL import Image from torch.utils.data import Dataset from utils.mypath import MyPath class simclr_c10(Dataset): base_folder = 'D:/wjd/simclr_c10' filename = "simclr_c10" def __init__(self, root=MyPath.db_root_dir('wjd/simclr_c10/'), train=True, transform=None, download=False): super(simclr_c10, self).__init__() self.data = None self.targets = [] self.root = root self.transform = transform self.train = train # training set or test set self.classes = ['Al', 'Ag', 'Au', 'Cu', 'W', 'V', 'Ta', 'Mo'] self._load_data() def _load_data(self): if self.train: data_file = os.path.join(self.root, self.base_folder, 'train.pkl') else: data_file = os.path.join(self.root, self.base_folder, 'test.pkl') with open(data_file, 'rb') as f: data = pickle.load(f) self.data = data['data'] self.targets = data['targets'] def __getitem__(self, index): """ Args: index (int): Index Returns: dict: {'image': image, 'target': index of target class, 'meta': dict} """ img, target = self.data[index], self.targets[index] img_size = (img.shape[0], img.shape[1]) img = Image.fromarray(img) class_name = self.classes[target] if self.transform is not None: img = self.transform(img) out = {'image': img, 'target': target, 'meta': {'im_size': img_size, 'index': index, 'class_name': class_name}} return out def get_image(self, index): img = self.data[index] return img def __len__(self): return len(self.data) def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") ```

class DataFolder(data.Dataset): """ ImageFolder can be used to load images where there are no labels.""" def __init__(self, root, TreePoint,dataLenPerFile, transform=None ,loader=default_loader): # dataLenPerFile is the number of all octnodes in one 'mat' file on average dataNames = [] for filename in sorted(glob.glob(root)): if is_image_file(filename): dataNames.append('{}'.format(filename)) self.root = root self.dataNames =sorted(dataNames) self.transform = transform self.loader = loader self.index = 0 self.datalen = 0 self.dataBuffer = [] self.fileIndx = 0 self.TreePoint = TreePoint self.fileLen = len(self.dataNames) assert self.fileLen>0,'no file found!' # self.dataLenPerFile = dataLenPerFile # you can replace 'dataLenPerFile' with the certain number in the 'calcdataLenPerFile' self.dataLenPerFile = self.calcdataLenPerFile() # you can comment this line after you ran the 'calcdataLenPerFile'

这段代码定义了一个自定义的 `DataFolder` 类,该类继承自 `torchvision.datasets.Dataset` 类,用于加载图像数据集。 构造函数 `__init__` 接受以下参数: - `root`:数据集的根目录,可以是包含图像文件的文件夹路径或包含通配符的文件路径。 - `TreePoint`:树结构的某个节点。 - `dataLenPerFile`:每个 'mat' 文件中平均包含的八叉树节点数量。 - `transform`:可选参数,用于对图像进行预处理的数据转换操作。 - `loader`:可选参数,用于加载图像的函数,默认为 `default_loader` 函数。 在构造函数中,首先通过 `glob.glob(root)` 使用通配符获取匹配 `root` 路径下的文件名列表,并使用 `is_image_file()` 函数过滤出图像文件,将它们添加到 `dataNames` 列表中。 接下来,设置了一些类变量和实例变量,包括 `root`、`dataNames`、`transform`、`loader`、`index`、`datalen`、`dataBuffer`、`fileIndx`、`TreePoint` 和 `fileLen`。 最后,通过断言确保找到了至少一个文件,否则抛出异常。 值得注意的是,在构造函数中还有一行被注释掉的代码:`self.dataLenPerFile = self.calcdataLenPerFile()`。它调用了一个名为 `calcdataLenPerFile()` 的方法来计算每个 'mat' 文件中的八叉树节点数量,并将结果赋给 `self.dataLenPerFile`。你可以在运行了 `calcdataLenPerFile()` 方法后,将其注释掉,然后直接使用给定的 `dataLenPerFile` 参数来指定值。 这段代码创建了一个自定义的数据集类,并提供了一些便捷的属性和方法来处理图像数据集。
阅读全文

相关推荐

最新推荐

recommend-type

pytorch学习教程之自定义数据集

def __init__(self, root_dir, labels_file, transform=None): self.root_dir = root_dir self.labels_file = labels_file self.transform = transform self.size = 0 self.labels_list = [] if not os.path...
recommend-type

Pytorch 数据加载与数据预处理方式

def __init__(self, root, transform=None, target_transform=None): # 初始化数据路径、数据处理等 pass def __len__(self): # 返回数据集长度 pass def __getitem__(self, idx): # 获取索引为idx的样本...
recommend-type

【java毕业设计】智慧社区教育服务门户.zip

有java环境就可以运行起来 ,zip里包含源码+论文+PPT, 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理