用pytorch写一个深度学习CNN网络,训练集是40个矩阵和它们的标签:40个14×14的numpy矩阵文件在一个名为1MATRICE的文件夹中,文件名为1.npy~50.npy;40个标签文件在一个名为1LABEL的文件夹中,文件名为label_0.npy~label_50.npy,其中前20个值为0,属于PD类别,后30个值为1,属于SWEDD类别。验证集为6个14×14的矩阵,用softmax输出两个类别的概率。
时间: 2024-02-26 14:58:28 浏览: 69
深度学习+使用pytorch实现CNN代码+算法原理代码部分的补充
好的,以下是一个基本的CNN网络的代码示例,您需要根据您的数据集进行调整和修改。首先,您需要导入所需的库和模块,如下所示:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import numpy as np
import os
```
接下来,您需要定义一个自定义数据集类,如下所示:
```python
class MyDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.matrices = []
self.labels = []
# Load matrices and labels
for i in range(1, 41):
matrix_path = os.path.join(self.root_dir, str(i) + 'MATRICE', str(i) + '.npy')
matrix = np.load(matrix_path)
self.matrices.append(matrix)
label_path = os.path.join(self.root_dir, str(i) + 'LABEL', 'label_' + str(i-1) + '.npy')
label = np.load(label_path)
self.labels.append(label)
def __len__(self):
return len(self.matrices)
def __getitem__(self, idx):
matrix = self.matrices[idx]
label = self.labels[idx]
if self.transform:
matrix = self.transform(matrix)
return matrix, label
```
然后,您需要定义一个CNN模型,如下所示:
```python
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.batchnorm1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU()
self.maxpool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.batchnorm2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU()
self.maxpool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(32 * 3 * 3, 64)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(64, 2)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.conv1(x)
x = self.batchnorm1(x)
x = self.relu1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.batchnorm2(x)
x = self.relu2(x)
x = self.maxpool2(x)
x = x.view(-1, 32 * 3 * 3)
x = self.fc1(x)
x = self.relu3(x)
x = self.fc2(x)
x = self.softmax(x)
return x
```
接下来,您需要定义训练和测试函数,如下所示:
```python
def train(model, train_loader, criterion, optimizer):
model.train()
train_loss = 0.0
train_acc = 0.0
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs.unsqueeze(1).float())
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc.double() / len(train_loader.dataset)
return train_loss, train_acc
def test(model, test_loader, criterion):
model.eval()
test_loss = 0.0
test_acc = 0.0
with torch.no_grad():
for i, (inputs, labels) in enumerate(test_loader):
outputs = model(inputs.unsqueeze(1).float())
loss = criterion(outputs, labels.long())
test_loss += loss.item() * inputs.size(0)
_, preds = torch.max(outputs, 1)
test_acc += torch.sum(preds == labels.data)
test_loss = test_loss / len(test_loader.dataset)
test_acc = test_acc.double() / len(test_loader.dataset)
return test_loss, test_acc
```
最后,您需要实例化并运行模型,如下所示:
```python
# Instantiate the model
model = CNN()
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Instantiate the data loaders
train_dataset = MyDataset('/path/to/train/folder')
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
test_dataset = MyDataset('/path/to/test/folder')
test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False)
# Train the model
for epoch in range(10):
train_loss, train_acc = train(model, train_loader, criterion, optimizer)
test_loss, test_acc = test(model, test_loader, criterion)
print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format(
epoch, train_loss, train_acc, test_loss, test_acc))
```
请注意,这只是一个基本的CNN模型,您需要根据您的数据集进行调整和修改。另外,由于您的数据集非常小,您可能需要采取一些正则化措施来防止过度拟合。
阅读全文