考虑如下协议: A→KDC: IDA/IDB/N1 KDC→A: E(K,[K/IDBNE(Kb,[KsIDA]) A→B: E(K,[K/|IDA]) B→A: E(Ks,N2) A→B: E(Ks,f(N2)) a.解释这个协议。 b.你能给出可能的攻击吗?解释它是如何完成的。 c.提出一种可能的技术躲开那种攻击,不需要详细描述,只需说明基本思路。 注意:剩下的问题和IBM 的加密产品有关,在本书的网址中可以找到描述 IBMCrypto.pdf。在看完文档后尝试这些问题。

时间: 2024-03-26 20:37:05 浏览: 17
a. 这是一个基于KDC(密钥分发中心)的认证协议。协议中有三个实体:A、B和KDC。A想要验证B的身份并与B进行加密通信。A向KDC发送一个消息,包含A和B的身份标识IDA和IDB以及一个随机数N1。KDC使用B的身份标识IDB和一个随机密钥Kb加密一个消息,包括一个新的随机密钥Ks(用于A和B之间的对话)和一个加密的消息,其中包括Ks、IDA和Kb的一部分。A收到这个消息并使用自己的密钥K来解密它,然后使用Ks加密一个随机数N2并发送给B。B用Ks解密N2并回复A一个加密的消息,其中包括对N2的一个哈希函数f的结果。A收到这个消息并验证哈希函数的结果。 b. 可能的攻击有中间人攻击(MITM)和重放攻击。在中间人攻击中,攻击者可以欺骗A和KDC,让它们相信攻击者是B。然后攻击者可以获取A和B之间的所有通信。在重放攻击中,攻击者可以记录A和B之间的通信,并将它们重新发送给A和B。这可能会导致A和B之间的通信被重复执行,并且攻击者可以获得敏感信息。 c. 可以使用数字证书来防止中间人攻击。数字证书是由可信的证书颁发机构(CA)颁发的,它包含了一个实体的公钥以及证书颁发机构的数字签名。在通信开始之前,A可以向CA请求B的数字证书。然后A可以使用证书中包含的公钥来验证B的身份。如果证书是由可信的CA颁发的,那么A可以相信B的身份,并继续与B进行加密通信。这可以防止中间人攻击,因为攻击者无法伪造一个有效的数字证书。
相关问题

考虑如下协议: A→KDC: IDA/IDB/N1 KDC→A: E(K,[K/IDBNE(Kb,[KsIDA]) A→B: E(K,[K/|IDA]) B→A: E(Ks,N2) A→B: E(Ks,f(N2)) a.解释这个协议

这是一个基于密钥分发中心(KDC)的认证协议,协议使用了对称加密算法。在这个协议中,有三个实体:A,B和KDC。A想要验证B的身份并与B进行加密通信。协议流程如下: 1. A向KDC发送一个消息,包含A和B的身份标识IDA和IDB以及一个随机数N1。 2. KDC使用B的身份标识IDB和一个随机密钥Kb加密一个消息,包括一个新的随机密钥Ks(用于A和B之间的对话)和一个加密的消息,其中包括Ks、IDA和Kb的一部分。 3. KDC将这个消息发送给A。 4. A收到这个消息并使用自己的密钥K来解密它,然后得到Ks、IDA和Kb的一部分。 5. A向B发送一个消息,其中包括IDA的一个加密版本,以及使用Ks加密的随机数N2。 6. B收到这个消息并使用Ks解密N2,并回复A一个加密的消息,其中包括对N2的一个哈希函数f的结果。 7. A收到这个消息并验证哈希函数的结果,以确保通信是安全的。 在这个协议中,KDC扮演着密钥分发的角色,使用B的公钥来加密新的密钥Ks。A和B之间的通信则使用Ks进行加密,保证通信的安全性。

关于c ++:从字符串crypto ++导入rsa公钥/私钥

你可以使用Crypto++库中的RSA类来导入RSA公钥/私钥的字符串表示。下面是一个简单的示例代码: ```c++ #include <iostream> #include <string> #include <cryptopp/rsa.h> #include <cryptopp/base64.h> using namespace CryptoPP; int main() { // RSA keys in PEM format std::string publicKeyPEM = "-----BEGIN PUBLIC KEY-----\n" "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvRJ9YmJ9A0seV0bSf+I6\n" "n5i6dF6qXl5Hf8b0KJvJ7eN0yTnE4t5rKQYdM+DLg1yXz+4kWv8xgJxJW9Q2gY7L\n" "wNqROnFJZrOq6zZVrWXfR4gWVv8grl2PZl6vQfGbdzPd2BhLW1QOyPZfGy1CCoMg\n" "FQd6ZqBx1UJHsUSx/PnV0i35S8zO7Zq9UxOYbRr9SiCsTJ0FNLwPz7CkC5u3VJ5D\n" "z5z2K7U0fGkO+8fOc5Qv2JUqKd6sN2oT+18+eVf/lvtlQ4U3aXyKZB7u0k8T3xKx\n" "3J2r3x4y+o9B3fz1aV0R/5N5Iz2Kt6gJyJmJyNfh0T+D5JLZL8o+Oq8rD8/8mLgV\n" "XQIDAQAB\n" "-----END PUBLIC KEY-----\n"; std::string privateKeyPEM = "-----BEGIN PRIVATE KEY-----\n" "MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQCuN1Qa1iRQ9ZvZ\n" "iFfZjzKfKXk9X5Rq8Dp4CCVt1LJbXG8oU1Kd7UeJb+JyQrK+D1hViDUKvC4pDvZL\n" "7Wv8wzZ1mJN+3M+Vc7dqSaTr0z+U4d3ZKQKj1UjF9/3Ud/HXw6Ez84Zx5fX1U7P\n" "3u9Qo+6g0cva0tYcZ8E4m8osjzOZn3n5Z+qoDZ2IuoktDjQOdT7vZJc7JmLQ+6U\n" "Gyf8B4j0c6V7iJ0oqOeq27m2xY6xu9gKwDvZl9zJrFv6f9JQy6yY5ZjXVItK8o+\n" "x3DfX+eD8XO7Z0f1wO3J5lXgBuJop4B3PzZPmZw3jwN3LZwU7hAqjWQvLj5r+DqR\n" "KwvS6TJnAgMBAAECggEBAJv9zZ1N9sN7E+gTt9y/7xFG2PjgB9VjYWg6bd4QKpRq\n" "zGJNj2n8q6k8l7k2uT6sRcO5RhS8bQpO4iLl3GJXZr5kjC0Z/1kE1p4H8Y9e5bDh\n" "gNl3ZnK3Wpli8q7KqUjOY8j6Ktj7+vZnT3sW6v/qpIbQgBn7d3q0qsqzjTm8c5f\n" "V3JzUJqkVJqX1mJmJd6tZslpO8mJyZL/vkC4KszkQeE8xKu6sIiA4r6l5e0+OJ8M\n" "8XmXhV8D8ZcHgKvq7qrBvFq5Xv2mHsLdQO+J7uNLC3iQzY3u4jB6Gk8fN7N3e3jv\n" "dDmf8P0l7dOj6q5sZtqoK6fJjW+PcVnC8KzXUy4YrtkCgYEA3g9W5c7J8KmX3xSU\n" "2p/7VfGzBYC7J1Ll1fz4qWf3XZ2VQF7q6yRrA5X+H2GkZiB3vL8/3gOeO3WuGnI0\n" "bJr1lOY9xMvQj7a6KdC5h4Wvmt3qqh6VdQw7dFx8fJ8x5RQwReOuyZ9nEE5Vf+en\n" "cRg9Uk9LQl3rZ4cazH7c+Lkrj2ECgYEAzL4u8eJ5gCpUvJZJyCmlrJX0GryL1wzE\n" "5zO8m1tjwg1YONyJvR4g4bd7p+56q6v3wTzoumH6x3AWDZC8Z6Jr6i4a8+cnl+9M\n" "P+Jr5Lr2fN2Y7w3dFzHhY5NIR0ZxTQJdC5Jp+el1+Kg2y4eFJZpQz0ueH2Jy6wuz\n" "zqJUQY2RmXUCgYEAwYjQg1FnKPGvJlRrXwL9cO4I3W0gx/kD+LpT8aEguJlRf4uS\n" "ZyN8a+xLZbGzWc5wKT9z3whYf4fXf4aFh2U+ZQzXG7yUa5KdNf7xvP8QXa6omQY0\n" "sQO2e1+Vc1r7h2e0HNY0U6E0g+7l7MBZv5lZP6XG7HdY5k8n1UdbvR9uGkECgYEA\n" "xAIlWc+0qLQUjY7t2sqHjzJ3nV2GxMvW0G9fZgD6loQWtKX2Y7r/x6WLZ9Smc5ZQ\n" "4QJ1l0sT1q2YKqCwR1u+2J9lX8Pp17FZK8Xvq8kPT9lQK9o3+JvUqPvX6xrmJ2mK\n" "R7uxvYv+ZzL2R9gkt/6g1QH0aRZzZj0+6+J5PfWen9sCgYEA7fQxJYJdQdUgJvZL\n" "gH2Y1o5LJ5W1N3v9zQJLJGJ1Tt7TfB3gXzOzL/hsW68Uzr+1JqP6e9LTk5OuWVQG\n" "yR7zFv3p6K5tqT2Z0OJdS4xVw/2zB5YzJiK6I6b5aMZr9o2ZtW/0A1m5RcU6bJSo\n" "Vz5Q5O1ZoD7JdS3d+6iNq+f8dQ==\n" "-----END PRIVATE KEY-----\n"; // Base64 decode the PEM strings std::string publicKeyStr, privateKeyStr; StringSource(publicKeyPEM, true, new Base64Decoder(new StringSink(publicKeyStr))); StringSource(privateKeyPEM, true, new Base64Decoder(new StringSink(privateKeyStr))); // Load the keys from the decoded strings RSA::PublicKey publicKey; RSA::PrivateKey privateKey; StringSource(publicKeyStr, true, new PEMDecoder(new StringSink(publicKey))); StringSource(privateKeyStr, true, new PEMDecoder(new StringSink(privateKey))); return 0; } ``` 在这个示例中,我们将PEM格式的RSA公钥/私钥字符串进行Base64解码,然后使用Crypto++库中的PEMDecoder类将它们加载到RSA::PublicKey和RSA::PrivateKey对象中。

相关推荐

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、