numpy框架下给定两个框的x1, y1, z1, w1, h1, d1,x2, y2, z2, w2, h2, d2计算两者的ciou,写出对应的python函数,用一个函数
时间: 2024-01-18 10:02:51 浏览: 167
纯Numpy实现的人工神经网络框架.zip
以下是numpy框架下计算两个框的ciou的函数:
```python
import numpy as np
def ciou(x1, y1, z1, w1, h1, d1, x2, y2, z2, w2, h2, d2):
"""
计算两个框的ciou
参数:
x1, y1, z1, w1, h1, d1: 第一个框的左上角坐标和宽度、高度、深度
x2, y2, z2, w2, h2, d2: 第二个框的左上角坐标和宽度、高度、深度
返回值:
两个框的ciou
"""
# 计算两个框的面积和宽度、高度、深度的最小值和最大值
area1 = w1 * h1 * d1
area2 = w2 * h2 * d2
max_xy = np.minimum((x1 + w1, y1 + h1, z1 + d1), (x2 + w2, y2 + h2, z2 + d2))
min_xy = np.maximum((x1, y1, z1), (x2, y2, z2))
inter_whd = np.clip(max_xy - min_xy, a_min=0, a_max=None)
inter_area = inter_whd[0] * inter_whd[1] * inter_whd[2]
union_area = area1 + area2 - inter_area
# 计算两个框的中心点坐标和宽度、高度、深度的差值
center1 = np.array((x1 + w1 / 2, y1 + h1 / 2, z1 + d1 / 2))
center2 = np.array((x2 + w2 / 2, y2 + h2 / 2, z2 + d2 / 2))
delta_center = center1 - center2
w1_, h1_, d1_ = w1, h1, d1
w2_, h2_, d2_ = w2, h2, d2
if inter_area > 0:
# 计算相交的框的左上角和右下角坐标
max_xy_i = np.maximum((x1, y1, z1), (x2, y2, z2))
min_xy_i = np.minimum((x1 + w1, y1 + h1, z1 + d1), (x2 + w2, y2 + h2, z2 + d2))
# 计算相交框的宽度、高度、深度的最小值
inter_whd_i = np.clip(max_xy_i - min_xy_i, a_min=0, a_max=None)
inter_diagonal = np.linalg.norm(inter_whd_i)
# 计算相交框的中心点坐标和宽度、高度、深度的差值
center_i = (max_xy_i + min_xy_i) / 2
delta_center_i = np.linalg.norm(center1 - center_i, ord=2, axis=-1)
# 计算相交框的最小闭合矩形对角线长度
w_i, h_i, d_i = min_xy_i - max_xy_i
v_i = w_i * h_i * d_i
alpha = 4 / (np.pi ** 2) * np.arctan(w_i * h_i * d_i / (4 * v_i - inter_area))
# 计算调整后的宽度、高度、深度
w1_ = w1 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
h1_ = h1 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
d1_ = d1 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
w2_ = w2 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
h2_ = h2 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
d2_ = d2 * np.exp(alpha * (delta_center_i / inter_diagonal - 1))
# 计算ciou
w_intersection = inter_whd[0]
h_intersection = inter_whd[1]
d_intersection = inter_whd[2]
v_intersection = w_intersection * h_intersection * d_intersection
v_union = w1_ * h1_ * d1_ + w2_ * h2_ * d2_ - v_intersection
iou = v_intersection / v_union
rho = delta_center ** 2 / (w1_ ** 2 + h1_ ** 2 + d1_ ** 2)
c_iou = iou - rho.sum() / rho.shape[-1] * (1 - iou)
return c_iou
```
阅读全文