pytorch处理非图像问题

时间: 2023-05-04 10:05:13 浏览: 67
PyTorch是一种十分流行的深度学习库,虽然它也常用于图像相关问题的处理,但实际上PyTorch可用于处理多种非图像的问题。下面我们来看看PyTorch如何处理非图像问题。 在处理非图像问题时,PyTorch通常通过将数据转换为Tensor来进行处理。通过将数据转换为Tensor,可以利用PyTorch中提供的各种函数和工具来对数据进行操作和处理。如何将数据转换为Tensor取决于数据类型,通常可以使用numpy.array或pandas数据框来完成。PyTorch也支持自定义数据加载器,可用于从文件或数据库中加载数据。 对于非图像问题,通常使用的是RNN和LSTM等深度学习模型。这些模型可以处理序列数据和时间序列数据,如自然语言处理、股票价格预测、音频处理等问题。PyTorch提供了许多内置的RNN和LSTM模块,可以轻松地将它们集成到模型中。此外,PyTorch还支持自定义神经网络模型,用户可以按照自己的需求设计模型,进行定制开发。 在非图像问题中,评估模型的效果也是十分重要的。PyTorch提供了许多用于评估模型性能的函数和工具,如损失函数、准确率、召回率等。此外,还可以使用TensorBoard等工具来可视化训练和测试结果,以及模型性能的变化趋势。 总之,PyTorch不仅可以用于图像问题的处理,而且可以广泛应用于各种非图像问题的处理,在非图像问题领域中拥有广泛的应用前景。
相关问题

pytorch处理图像实例

很好的问题!PyTorch是一个流行的Python深度学习框架,它非常适合于处理图像数据。您可以使用PyTorch来构建各种图像应用程序,例如图像分类,目标检测,语义分割等。PyTorch具有方便的图像转换和增强功能,同时也有用于训练神经网络的各种算法和技术。您可以使用PyTorch中的类似于Pillow的库来加载和处理图像。总之,PyTorch是一个非常强大和灵活的框架,可以处理各种图像处理任务。

pytorch图像处理

对于图像处理,PyTorch提供了一些常用的功能和库,可以帮助你进行图像处理任务。以下是一些你可以在PyTorch中使用的图像处理技术: 1. 数据加载和预处理:PyTorch提供了`torchvision`库,其中包含了一些常用的图像数据集和数据变换操作。你可以使用`torchvision.datasets`模块加载常见的图像数据集,如MNIST、CIFAR等。同时,你可以使用`torchvision.transforms`模块进行图像的预处理操作,如调整大小、裁剪、旋转、翻转等。 2. 卷积神经网络(CNN):PyTorch中的`torch.nn`模块提供了构建CNN的类和函数,你可以使用这些类和函数创建自定义的卷积神经网络模型。通过定义卷积层、池化层、全连接层等组件,你可以构建一个用于图像分类、目标检测或语义分割等任务的CNN模型。 3. 预训练的模型:PyTorch提供了一些经过大规模训练的预训练模型,如ResNet、VGG、Inception等。这些预训练模型可以直接加载并在新数据上进行微调或特征提取。你可以使用`torchvision.models`模块加载这些预训练模型,并根据自己的需要进行修改和使用。 4. 图像生成:PyTorch中的生成对抗网络(GAN)模型也可以用于图像生成任务。你可以使用`torch.nn`模块定义生成器和判别器网络,并使用GAN框架进行训练。通过训练生成器网络,你可以生成逼真的图像样本。 5. 图像风格转换:PyTorch中也有一些库,如Fast Neural Style Transfer(快速神经风格转换),可以帮助你将图像的风格从一个输入图像转移到另一个目标图像。这在艺术创作和图像增强领域中很有用。 这只是一些PyTorch在图像处理方面的功能和技术示例,你可以根据具体任务的需求来选择和使用相关的技术。使用PyTorch进行图像处理需要一定的编程基础和理解,建议先学习PyTorch的基础知识和相关文档,然后根据需要进行实践和进一步学习。

相关推荐

PyTorch是一个非常适合进行图像处理的框架,它提供了许多用于图像处理的工具和函数。下面是一个简单的图像处理的例子: import torch import torch.nn.functional as F from PIL import Image # 加载图像 img = Image.open('image.jpg') # 转换为张量 img_tensor = F.to_tensor(img) # 改变尺寸 resized_tensor = F.interpolate(img_tensor, size=(224, 224)) # 标准化 normalized_tensor = F.normalize(resized_tensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 增加批次维度 batched_tensor = torch.unsqueeze(normalized_tensor, dim=0) # 加载模型 model = torchvision.models.resnet18(pretrained=True) # 运行模型 output = model(batched_tensor) # 获取预测结果 pred = torch.argmax(output, dim=1) # 打印预测结果 print(pred) 这个例子演示了如何使用PyTorch进行图像处理和分类。首先,我们加载了一张图像,并将其转换为张量。然后,我们通过插值方法将图像的尺寸改变为我们需要的大小。接下来,我们对图像进行标准化,这是因为预训练模型对输入数据进行了标准化。我们还需要将张量增加一个批次维度,因为模型需要一个批次的输入。 然后,我们加载了一个预训练的ResNet18模型,并将我们的张量输入到模型中。最后,我们获取预测结果并打印出来。 这个例子只是一个简单的图像处理和分类的例子,PyTorch还提供了许多其他的图像处理工具和函数,可以帮助您进行更复杂的图像处理任务。
PyTorch的RNN图像分类源码主要包含以下步骤: 1. 数据预处理:首先,需要将图像数据加载到代码中并进行预处理。这包括将图像转换为张量,并进行归一化和标准化处理。 2. 创建RNN模型:基于PyTorch的nn.Module类,我们可以创建一个RNN模型。该模型由一个RNN层和一个全连接层组成。RNN层用于提取图像特征,全连接层用于进行分类。 3. 定义损失函数和优化器:为了训练模型,需要选择合适的损失函数和优化器。在图像分类任务中,通常使用交叉熵损失函数和随机梯度下降(SGD)优化器。 4. 训练模型:使用训练数据集对模型进行训练。在每个训练步骤中,通过前向传播计算模型输出,并通过反向传播更新模型参数以减小损失函数。 5. 模型评估:使用测试数据集对训练好的模型进行评估。通过计算分类准确率、精确率、召回率等指标,可以评估模型在图像分类任务上的性能。 6. 进行预测:使用训练好的模型对新的未知图像进行分类预测。通过将图像输入到模型中,并获取输出类别,可以预测图像所属的类别。 总的来说,PyTorch的RNN图像分类源码包含数据预处理、模型创建、损失函数和优化器的定义、模型训练、模型评估和预测等步骤。通过这些步骤,可以构建一个能够对图像进行分类的RNN模型,并通过训练和评估来提高模型准确性。
对于基于图像的检索任务,可以使用PyTorch中的VGG16模型来提取图像的特征向量。以下是一个简单的示例代码: python import torch import torchvision.models as models import torchvision.transforms as transforms from PIL import Image # 加载预训练的VGG16模型 model = models.vgg16(pretrained=True) model.eval() # 图像预处理 preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载图像并进行预处理 image = Image.open('image.jpg') input_tensor = preprocess(image) input_batch = input_tensor.unsqueeze(0) # 使用VGG16模型提取特征向量 with torch.no_grad(): features = model(input_batch) # 将特征向量转换为一维向量 feature_vector = torch.flatten(features) print(feature_vector) 在上述代码中,我们首先加载了预训练的VGG16模型,并将其设置为评估模式。然后,我们定义了一个图像预处理管道,该管道将输入图像调整为指定大小,并进行归一化处理。接下来,我们加载一张图像并将其预处理为模型所需的输入格式。最后,我们使用VGG16模型提取特征向量,并将其转换为一维向量。 请注意,此示例仅展示了如何使用VGG16模型提取特征向量,并没有涉及到具体的图像检索算法。在实际应用中,您可能需要将提取的特征向量与数据库中的特征向量进行比较,以实现图像检索功能。
在 PyTorch 中,可以使用 torch.utils.data.Dataset 和 torch.utils.data.DataLoader 来加载和处理高光谱图像数据,并进行取块操作。 假设你的高光谱图像数据集是一个 .npy 文件,其中包含了所有的高光谱图像数据。首先,你需要自定义一个 HyperspectralDataset 类,继承自 torch.utils.data.Dataset 类,用于加载和处理数据集。在这个类中,你可以实现 __getitem__ 方法来获取每个样本的数据和标签,并将其转换为张量。具体实现可以参考下面的代码: python import torch from torch.utils.data import Dataset class HyperspectralDataset(Dataset): def __init__(self, data_path, label_path, block_size): self.data = torch.from_numpy(np.load(data_path)).float() self.labels = torch.from_numpy(np.load(label_path)).long() self.block_size = block_size def __getitem__(self, index): x = self.data[index] y = self.labels[index] # randomly sample a block from the hyperspectral image x_block = self.random_crop(x, self.block_size) return x_block, y def __len__(self): return len(self.data) def random_crop(self, x, block_size): _, h, w = x.size() dh, dw = block_size, block_size h1 = np.random.randint(0, h - dh + 1) w1 = np.random.randint(0, w - dw + 1) return x[:, h1:h1+dh, w1:w1+dw] 在上述代码中,data_path 和 label_path 分别为高光谱图像数据和标签的 .npy 文件路径,block_size 为取块的大小。在 __getitem__ 方法中,我们随机采样一个块,并将其返回。 接下来,你可以使用 torch.utils.data.DataLoader 类来创建一个数据加载器,用于批量加载数据集。例如: python from torch.utils.data import DataLoader hyperspectral_dataset = HyperspectralDataset(data_path, label_path, block_size) hyperspectral_dataloader = DataLoader(dataset=hyperspectral_dataset, batch_size=batch_size, shuffle=True) 其中,batch_size 是每个批次的大小,shuffle=True 表示每个批次的样本顺序是随机的。 最后,你可以使用 for 循环遍历数据加载器,并逐个获取每个批次的数据和标签。例如: python for x_batch, y_batch in hyperspectral_dataloader: # do something with x_batch and y_batch 在上述代码中,x_batch 的维度为 (batch_size, num_channels, block_size, block_size),y_batch 的维度为 (batch_size,)。你可以对 x_batch 进行进一步处理,例如将其送入模型进行训练或推断。
高光谱图像是一种具有多个连续和离散波段的图像,每个波段代表不同的颜色或波长。要处理高光谱图像的光谱数据,可以使用PyTorch这个开源的深度学习框架。 首先,需要将高光谱图像的光谱数据转化为张量。可以使用PyTorch的Tensor对象来表示高光谱图像的光谱数据。然后,可以使用PyTorch提供的函数和方法对这些张量进行各种操作和处理。 在光谱数据处理中,常见的任务包括预处理、特征提取和分类。预处理可以包括对光谱数据进行归一化、降噪或平滑等操作,以便更好地提取和分析数据。特征提取可以通过构建卷积神经网络(CNN)或其他深度学习模型来实现,以发现高光谱图像中的有用特征。分类任务可以使用PyTorch中提供的分类模型,如ResNet、VGG等,通过对特征进行分类来区分图像。 PyTorch提供了丰富的工具和库,如torchvision等,用于处理图像数据。通过使用这些工具,可以方便地加载、处理和可视化高光谱图像数据。此外,由于PyTorch是一个计算图框架,还可以使用自动微分功能来进行梯度计算和优化,以便训练模型。 总之,使用PyTorch可以方便地处理高光谱图像的光谱数据。通过使用PyTorch的深度学习功能,可以进行数据的预处理、特征提取和分类等任务,并通过构建和训练深度学习模型实现高光谱图像分析和应用。
### 回答1: PyTorch是一个基于Python开发的机器学习框架,它拥有丰富的工具和功能,适用于各种任务,包括遥感图像地物分类。遥感图像地物分类是指通过对遥感图像进行分析和识别,将不同地物分类为不同的类别,如建筑、道路、植被等。 在PyTorch中实现遥感图像地物分类可以遵循以下步骤: 1. 数据准备:首先,需要准备用于训练和评估的遥感图像数据集。可以从公开数据集中获取,或者根据实际需要收集和整理数据集。 2. 数据加载:使用PyTorch的数据加载器,将图像数据集加载到内存中,并对数据集进行预处理,如裁剪、缩放和标准化等。 3. 模型设计:选择适合遥感图像分类的模型架构,如卷积神经网络(CNN)。可以使用PyTorch提供的模型库,如ResNet、VGG等,也可以自定义模型。 4. 模型训练:将加载的图像数据集输入到模型中,通过定义损失函数和优化器,使用PyTorch提供的自动求导功能,进行模型训练。可以根据需要设置训练的迭代次数、学习率等超参数,并周期性地评估模型的性能。 5. 模型评估:训练完成后,使用测试集对模型进行评估,计算分类精度、查准率、查全率等指标,评估模型的性能。 6. 模型应用:经过训练和评估后,可以使用该模型对新的遥感图像进行分类预测。将新的图像输入到模型中,经过前向传播计算,得到图像的预测类别。 总而言之,通过PyTorch实现遥感图像地物分类可以借助其强大的机器学习功能和便捷的开发环境,快速高效地完成图像分类任务。同时,PyTorch还提供了丰富的工具和库,方便用户进行模型设计、训练和评估,并具有良好的可扩展性和灵活性,满足不同用户的需求。 ### 回答2: PyTorch是一个常用的深度学习框架,它提供了丰富的功能和工具,可以用于遥感图像地物分类任务的实现。在知乎上,关于PyTorch实现遥感图像地物分类的问题,可能会有一些相关的回答。 首先,我们需要准备好用于训练的遥感图像数据集。可以使用公开的遥感图像数据集,或者是自己收集的数据集。数据集应包含不同类别的地物图像样本,并且要进行适当的标注。 接下来,我们可以使用PyTorch的数据处理工具,如torchvision来加载和预处理图像数据。可以使用torch.utils.data.Dataset构建一个自定义的数据集类,根据需要对图像进行预处理操作,如缩放、裁剪、归一化等。 然后,我们可以使用PyTorch搭建一个卷积神经网络(CNN)模型,用于图像分类任务。可以根据具体的需求选择不同的网络结构,如ResNet、VGG等。可以使用torch.nn模块来构建自定义的网络模型,包括卷积层、池化层、全连接层等。 在模型搭建完成后,我们需要定义损失函数和优化器来进行训练。常用的损失函数有交叉熵损失函数(CrossEntropyLoss),可以通过torch.nn.CrossEntropyLoss来定义。优化器可以选择Adam、SGD等,可以使用torch.optim模块来构建。 接着,我们可以编写训练循环,使用训练数据来迭代训练模型。可以使用torch.utils.data.DataLoader来创建一个数据迭代器,方便获取批量的数据样本。然后,依次将数据输入到模型中,计算损失函数,并通过优化器来更新模型参数。 在训练过程中,可以使用一些技巧来提高模型性能,如数据增强、学习率调整等。可以通过torchvision.transforms来实现数据增强操作,如随机裁剪、随机旋转等。可以使用学习率调整器(Learning Rate Scheduler)来动态调整学习率,如StepLR、ReduceLROnPlateau等。 最后,在训练完成后,我们可以使用测试数据对模型进行评估。可以使用测试数据集来验证模型的泛化能力,并计算评估指标,如准确率、召回率等。 总之,使用PyTorch实现遥感图像地物分类是一个相对复杂的任务,但通过合理的数据处理、模型搭建和优化方法,可以有效实现。知乎上也有很多关于这一问题的讨论和分享,可以帮助我们更好地理解和实践相关内容。 ### 回答3: pytorch是一个常用的深度学习框架,可以用于遥感图像地物分类任务的实现。在pytorch中,可以利用卷积神经网络(CNN)进行图像分类任务。 首先,需要准备好遥感图像的数据集。数据集应包含标注好的遥感图像样本,以及每个样本对应的地物分类标签。接下来,可以利用pytorch的数据加载工具,如torchvision库中的datasets模块,将数据集按照一定的比例划分为训练集、验证集和测试集。 然后,可以利用pytorch的模型类来定义一个卷积神经网络模型。模型的结构可以根据具体任务进行设计,一般建议包含多个卷积层、池化层和全连接层。可以根据需要,使用不同的卷积核大小、步幅和激活函数等。 在模型定义好后,可以利用pytorch的优化器类定义一个优化器,如Adam优化器。优化器可以控制模型的权重更新方式,在训练过程中调整学习率和动量等超参数。 接下来,可以利用pytorch的训练循环来训练模型。训练循环包括多个迭代的训练阶段,每个阶段包括前向传播、计算损失、反向传播和模型权重更新等步骤。可以利用pytorch的损失函数类定义一个损失函数,如交叉熵损失函数。在训练过程中,通过最小化损失函数来优化模型的权重。 在训练结束后,可以利用验证集来评估模型的性能,并根据需要进行调参和优化。最后,可以利用测试集对训练好的模型进行评估,并根据评估结果进行后续的地物分类任务。 总之,pytorch可以提供一个灵活、高效的深度学习框架,用于实现遥感图像地物分类任务。通过合理设计模型结构、选择合适的优化器和损失函数,以及使用训练循环和数据加载工具等功能,可以实现高准确率的地物分类模型。
对于医学图像分割的任务,PyTorch是一个非常流行和强大的深度学习框架之一。你可以使用PyTorch来构建和训练神经网络模型,用于医学图像分割任务。 下面是一些使用PyTorch进行医学图像分割的一般步骤: 1. 数据准备:首先,你需要准备医学图像数据集。这包括收集和标记一组医学图像,通常是由专业人员手动进行标注。你需要将这些图像划分为训练集和测试集。 2. 构建模型:使用PyTorch构建分割模型。常见的模型包括U-Net、FCN(全卷积网络)、DeepLab等。这些模型通常由编码器和解码器组成,可以有效地处理医学图像分割任务。 3. 数据预处理:在将图像提供给模型之前,需要对其进行预处理。这可能包括缩放、裁剪、标准化等操作,以确保输入数据的一致性和合理性。 4. 模型训练:使用准备好的训练集对模型进行训练。这涉及到定义损失函数(如交叉熵损失、Dice系数等)和优化器(如Adam、SGD等),并在训练过程中迭代地调整模型的权重。 5. 模型评估:在训练完成后,使用准备好的测试集对模型进行评估。这包括计算分割结果与标注结果之间的相似度指标,如Dice系数、IoU(交并比)等。 6. 模型应用:一旦模型训练和评估完成,你可以将其应用于新的医学图像,以进行分割任务。这可能涉及到对新图像进行预处理和后处理的步骤。 总的来说,PyTorch提供了丰富的工具和库,可以用于医学图像分割任务的开发和实施。它具有灵活性和可扩展性,可以帮助你构建高性能的分割模型。
PyTorch是一种开源的深度学习框架,用于开发和训练神经网络模型。在红外图像识别领域,PyTorch可以用于构建和训练用于红外图像识别的深度学习模型。 红外图像识别模型是一种利用红外图像进行物体检测、分类和识别的技术。由于红外图像具有独特的热能信息,可以在夜间或低照度环境下提供更好的目标识别能力。使用PyTorch构建红外图像识别模型具有以下优势: 首先,PyTorch提供了丰富的深度学习库,例如TorchVision,可以方便地加载和预处理红外图像数据集。这些库提供了图像增强、数据加载和数据转换等功能,使得数据处理更加灵活和高效。 其次,PyTorch提供了灵活的模型构建和训练接口,使得研究人员和开发者可以自由地定义网络结构和优化算法。可以使用PyTorch的自动求导功能来计算损失函数的梯度,并使用优化器来更新模型参数,从而加快模型的训练和收敛速度。 此外,PyTorch还支持使用GPU进行加速计算,可以利用GPU的并行计算能力来加速模型的训练和推理过程,提高识别速度和准确性。 最后,PyTorch拥有庞大的社区支持和丰富的文档资料,可以帮助用户解决模型训练中的各种问题。用户可以通过查阅文档、在线论坛和社交媒体等途径获得帮助和反馈。 综上所述,PyTorch是一种用于构建和训练红外图像识别模型的优秀工具。它提供了强大的功能和易用的接口,可以帮助用户快速构建高效的深度学习模型,并取得优秀的识别效果。

最新推荐

基于 VGG19 的图像风格迁移研究

利用 VGG-19 神经网络 模型,结合人工智能开源框架 Pytorch 设计快速图像风格迁移算法。实验表明, 采用 VGG-19 神经网络模型的图像风格迁移技术,生成了具有高感知质量的新图 像,将任意照片的内容与众多著名艺术品...

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�

ERROR 1045 (28000): Access denied for user 'daizong'@'localhost' (using password: NO) mac

这个错误提示表明您正在尝试使用用户名'daizong'在本地主机上连接到MySQL服务器,但是没有提供密码。这可能是因为您在连接字符串中没有指定密码,或者您提供的密码不正确。要解决此问题,您可以尝试以下几个步骤: 1. 确保您在连接字符串中提供了正确的密码。例如,如果您的密码是'password',则您的连接字符串应该类似于以下内容: ``` mysql -u daizong -ppassword ``` 2. 如果您确定密码正确,但仍然无法连接,请尝试重置MySQL root用户的密码。您可以按照以下步骤操作: - 停止MySQL服务器 ```