GPLinker_pytorch代码复现
时间: 2024-12-11 07:14:50 浏览: 8
GPLinker_pytorch是一个基于PyTorch实现的图神经网络模型,用于链接预测任务。以下是GPLinker_pytorch代码复现的步骤:
### 1. 环境准备
首先,确保你已经安装了必要的库和工具,包括PyTorch和相关的依赖项。
```bash
pip install torch torchvision
```
### 2. 数据准备
准备你的数据集。假设你的数据集包含节点特征、边信息和标签。你需要将数据转换为PyTorch张量。
```python
import torch
# 示例数据
node_features = torch.randn(num_nodes, feature_dim)
edge_index = torch.tensor([[0, 1, 1, 2],
[1, 0, 2, 1]], dtype=torch.long)
edge_attr = torch.randn(num_edges, edge_dim)
labels = torch.tensor([0, 1, 1, 0], dtype=torch.long)
```
### 3. 模型定义
定义GPLinker模型。GPLinker通常包含多个图卷积层和一个链接预测层。
```python
import torch.nn as nn
import torch.nn.functional as F
class GPLinker(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(GPLinker, self).__init__()
self.conv1 = nn.Linear(input_dim, hidden_dim)
self.conv2 = nn.Linear(hidden_dim, hidden_dim)
self.link_pred = nn.Linear(hidden_dim, output_dim)
def forward(self, x, edge_index):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
return self.link_pred(x)
model = GPLinker(input_dim=feature_dim, hidden_dim=hidden_dim, output_dim=num_classes)
```
### 4. 训练和评估
定义损失函数和优化器,并编写训练和评估循环。
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
out = model(node_features, edge_index)
loss = criterion(out, labels)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
model.eval()
with torch.no_grad():
out = model(node_features, edge_index)
_, predicted = torch.max(out, dim=1)
accuracy = (predicted == labels).sum().item() / labels.size(0)
print(f'Epoch {epoch}, Loss: {loss.item()}, Accuracy: {accuracy}')
```
### 5. 保存和加载模型
训练完成后,可以保存模型参数,并在需要时加载。
```python
# 保存模型
torch.save(model.state_dict(), 'gplinker_pytorch.pth')
# 加载模型
model = GPLinker(input_dim=feature_dim, hidden_dim=hidden_dim, output_dim=num_classes)
model.load_state_dict(torch.load('gplinker_pytorch.pth'))
model.eval()
```
阅读全文