Transformer模型结构
时间: 2024-06-13 08:02:12 浏览: 195
大模型结构介绍,从Transformer到llama,再到llama2
Transformer是一种深度学习模型,由Google在2017年提出的Transformer架构彻底改变了自然语言处理(NLP)领域,特别是在序列到序列的任务中,如机器翻译和文本生成。它的核心是自注意力机制(Self-Attention),而不是传统的循环神经网络(RNN)或卷积神经网络(CNN)中的递归或局部连接。
Transformer模型结构主要包括以下几个关键部分:
1. **编码器(Encoder)**:输入序列经过一系列嵌入层(Embedding Layer),然后通过多个编码器层。每个编码器层包括自注意力模块(Self-Attention)、前馈神经网络(Feedforward Network)以及残差连接(Residual Connections)和Layer Normalization。
2. **自注意力机制**:它允许模型同时考虑输入序列中所有位置的信息,而不是像RNN那样按顺序处理。这通过计算查询(Query)、键(Key)和值(Value)的相似度矩阵来实现,从而找出不同位置之间的关联。
3. **解码器(Decoder)**:在编码器生成的上下文向量的基础上进行操作,同样包含多层编码器,但增加了自注意力模块的一种变体(称为“自注意力掩码”),以避免模型看到未来的信息。
4. **多头注意力(Multi-Head Attention)**:将自注意力分为多个子空间进行,增强了模型对输入表示的多样性。
5. **位置编码(Positional Encoding)**:为原始输入添加位置信息,因为自注意力机制不保留序列的顺序。
6. **残差块(Residual Blocks)**:有助于梯度传播和模型训练过程中的稳定性。
Transformer因其高效并行化处理的能力,以及在长序列任务中的优秀表现而受到广泛青睐,并已扩展到许多其他领域,如计算机视觉(Vision Transformer, ViT)和音频处理。
阅读全文