给我一份可逆u-net代码
时间: 2023-06-16 21:05:14 浏览: 87
U-net-代码实现
3星 · 编辑精心推荐
下面是一个基于PyTorch的可逆U-Net代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ReversibleBlock(nn.Module):
def __init__(self, f, g):
super(ReversibleBlock, self).__init__()
self.f = f
self.g = g
def forward(self, x):
x1, x2 = torch.chunk(x, 2, dim=1)
y1 = x1 + self.f(x2)
y2 = x2 + self.g(y1)
return torch.cat([y1, y2], dim=1)
class ReversibleSequence(nn.Module):
def __init__(self, blocks):
super(ReversibleSequence, self).__init__()
self.blocks = nn.ModuleList(blocks)
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class ReversibleUNet(nn.Module):
def __init__(self, in_channels, out_channels, depth, f_block, g_block):
super(ReversibleUNet, self).__init__()
self.f_block = f_block
self.g_block = g_block
self.bottom_block = ReversibleBlock(self.f_block, self.g_block)
self.down_blocks = nn.ModuleList()
for i in range(depth):
f = nn.Sequential(
nn.Conv2d(in_channels=2 ** i, out_channels=2 ** (i + 1), kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True),
self.f_block
)
g = nn.Sequential(
nn.Conv2d(in_channels=2 ** i, out_channels=2 ** (i + 1), kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True),
self.g_block
)
block = ReversibleBlock(f, g)
self.down_blocks.append(block)
self.up_blocks = nn.ModuleList()
for i in reversed(range(depth)):
f = nn.Sequential(
nn.ConvTranspose2d(in_channels=2 ** (i + 1), out_channels=2 ** i, kernel_size=3, stride=2, padding=1,
output_padding=1),
nn.ReLU(inplace=True),
self.f_block
)
g = nn.Sequential(
nn.ConvTranspose2d(in_channels=2 ** (i + 1), out_channels=2 ** i, kernel_size=3, stride=2, padding=1,
output_padding=1),
nn.ReLU(inplace=True),
self.g_block
)
block = ReversibleBlock(f, g)
self.up_blocks.append(block)
self.output_block = nn.Conv2d(in_channels=2, out_channels=out_channels, kernel_size=1)
def forward(self, x):
x = x.unsqueeze(0)
xs = [x]
for block in self.down_blocks:
x = block(x)
xs.append(x)
x = self.bottom_block(x)
for block, skip in zip(self.up_blocks, reversed(xs[:-1])):
x = block(x)
x = torch.cat([x, skip], dim=1)
x = self.output_block(x)
return x.squeeze(0)
```
其中,ReversibleBlock是可逆块,由两个函数f和g组成,f和g都是nn.Module。ReversibleSequence是可逆块的序列,由多个可逆块组成。ReversibleUNet是可逆U-Net模型,由多个可逆块序列组成。
在实现f和g时,需要保证它们是可逆的。可以考虑使用可逆层(如可逆卷积层,可逆池化层)或者使用自定义的可逆函数。
需要注意的是,由于可逆U-Net中每个可逆块的输入和输出通道数都是相同的,因此需要在每个可逆块中将输入张量切分为两个部分,分别进行计算,然后将两个部分合并。这里使用了`torch.chunk`和`torch.cat`函数实现。
阅读全文