c++可持久化线段树怎么写

时间: 2023-02-23 12:52:17 浏览: 53
可持久化线段树的实现方式与普通的线段树有些不同,因为它需要在每次修改时保存当前线段树的版本。一种常见的方法是在修改时复制一份线段树,并在其上进行修改,保证在下次修改时不会影响到以前的版本。 可持久化线段树的代码实现如下: ``` struct Node { int l, r; int val; }; vector<Node> t[MAX_N]; int rt[MAX_N]; int sz; void modify(int l, int r, int x, int k, int &y) { t[y=++sz]=t[x]; t[y].val+=k; if(l==r) return; int mid=(l+r)>>1; if(mid>=p) modify(l,mid,t[x].l,k,t[y].l); else modify(mid+1,r,t[x].r,k,t[y].r); } int query(int l, int r, int x, int p) { if(l==r) return t[x].val; int mid=(l+r)>>1; if(mid>=p) return query(l,mid,t[x].l,p)+t[x].val; else return query(mid+1,r,t[x].r,p)+t[x].val; } ``` 以上代码实现了一个基本的可持久化线段树,其中 `modify` 函数实现了修改操作,`query` 函数实现了查询操作。
相关问题

c++可持久化线段树

C++可持久化线段树是一种高效处理区间操作的数据结构,它可以在每次修改操作后保存一份新的线段树副本,并且可以在不影响原有版本的情况下进行查询操作。 这种数据结构的基本思想是通过复用已有线段树的节点,来构建新的线段树,从而实现持久化。在每次修改操作时,我们会复制一份原有线段树的节点,并在需要修改的位置上进行更新。这样,我们就可以保持原有线段树不变,同时创建一个新的版本。 为了实现这一点,我们可以使用一棵二叉树来表示线段树的每个节点。每个节点都包含一个值,表示该节点所代表的区间的信息,以及两个指针,分别指向左子树和右子树。当需要修改某个节点时,我们会先复制一份该节点,并在需要修改的位置上进行更新。 在查询操作时,我们可以通过遍历每个版本的线段树来找到所需的区间信息。具体的查询过程与普通线段树类似,只是需要在每个节点处判断当前版本是否需要继续向下遍历。 通过使用可持久化线段树,我们可以方便地支持历史版本的查询操作,而不需要重新构建整个线段树。这在一些需要回溯历史数据的场景中非常有用,例如历史状态的查询、版本控制等。 希望这能对你有所帮助!如果你对可持久化线段树还有进一步的问题,可以继续向我提问。

c++可持久化左偏树

可持久化左偏树是一种支持历史版本查询的数据结构,它可以在不破坏原有数据结构的基础上,对其进行修改和查询。下面是一个简单的C++可持久化左偏树的实现: ```c++ #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; struct Node { int val, ls, rs; } t[MAXN * 40]; int n, m, cnt, root[MAXN]; int build(int l, int r) { int p = ++cnt; if (l == r) { t[p].val = 0; return p; } int mid = (l + r) >> 1; t[p].ls = build(l, mid); t[p].rs = build(mid + 1, r); return p; } int update(int pre, int l, int r, int x, int v) { int p = ++cnt; t[p] = t[pre]; if (l == r) { t[p].val += v; return p; } int mid = (l + r) >> 1; if (x <= mid) t[p].ls = update(t[pre].ls, l, mid, x, v); else t[p].rs = update(t[pre].rs, mid + 1, r, x, v); return p; } int query(int u, int v, int l, int r, int k) { if (l == r) return l; int mid = (l + r) >> 1; int cnt = t[t[v].ls].val - t[t[u].ls].val; if (cnt >= k) return query(t[u].ls, t[v].ls, l, mid, k); else return query(t[u].rs, t[v].rs, mid + 1, r, k - cnt); } int main() { scanf("%d%d", &n, &m); root[0] = build(1, n); for (int i = 1; i <= n; i++) { int x; scanf("%d", &x); root[i] = update(root[i - 1], 1, n, x, 1); } while (m--) { int l, r, k; scanf("%d%d%d", &l, &r, &k); printf("%d\n", query(root[l - 1], root[r], 1, n, k)); } return 0; } ``` 上述代码实现了一个可持久化左偏树,支持区间第k小查询。其中,build函数用于建立一棵空树,update函数用于在原有版本的基础上插入一个新节点,query函数用于查询区间第k小。在主函数中,我们首先建立一棵空树,然后依次插入每个节点,最后进行m次区间查询。

相关推荐

最新推荐

recommend-type

linux系统中c++写日志文件功能分享

主要介绍了linux系统中c++写日志文件功能,简化了glog,只保留了写日志文件的功能,只是改写了linux版本,需要的朋友可以参考下
recommend-type

C++类的静态成员初始化详细讲解

通常静态数据成员在类声明中声明,在包含类方法的文件中初始化.初始化时使用作用域操作符来指出静态成员所属的类.但如果静态成员是整型或是枚举型const,则可以在类声明中初始化
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

主要介绍了C++实现哈夫曼树简单创建与遍历的方法,对于C++算法的学习来说不失为一个很好的借鉴实例,需要的朋友可以参考下
recommend-type

C++全局变量初始化的一点总结

 根据 C++ 标准,全局变量的初始化要在 main 函数执行前完成,常识无疑,但是这个说法有点含糊,main 函数执行前到底具体是什么时候呢?是编译时还是运行时?答案是既有编译时,也可能会有运行时(seriously), 从...
recommend-type

c++ 子类构造函数初始化及父类构造初始化的使用

主要介绍了c++ 子类构造函数初始化及父类构造初始化的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。