请你帮我的模型代码加入fit方法
时间: 2024-02-22 22:59:12 浏览: 69
matlab拟合差值代码-CP-Fit:自动拟合应力-应变数据和织构以实现晶体可塑性
好的,以下是一个简单的示例,假设你的模型类为 MyModel:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.base import BaseEstimator
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2))
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
self.conv2_1_1 = nn.Conv2d(3, 1, kernel_size=(5, 5), stride=(1, 1))
self.relu2_1_1 = nn.ReLU()
self.conv2_1_2 = nn.Conv2d(4, 1, kernel_size=(5, 5), stride=(1, 1))
self.relu2_1_2 = nn.ReLU()
self.conv2_1_3 = nn.Conv2d(4, 1, kernel_size=(5, 5), stride=(1, 1))
self.relu2_1_3 = nn.ReLU()
self.conv2_1_4 = nn.Conv2d(6, 1, kernel_size=(5, 5), stride=(1, 1))
self.conv3 = nn.Sequential(nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
self.fc1 = nn.Sequential(nn.Linear(400, 120), nn.BatchNorm1d(120), nn.ReLU())
self.fc2 = nn.Sequential(nn.Linear(120, 84), nn.BatchNorm1d(84), nn.ReLU(), nn.Linear(84, 10))
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x1 = self.conv2_1_1(x[:, :3])
x1 = self.relu2_1_1(x1)
x2 = self.conv2_1_2(x)
x2 = self.relu2_1_2(x2)
x3 = self.conv2_1_3(torch.cat((x[:, :3], x2), dim=1))
x3 = self.relu2_1_3(x3)
x4 = self.conv2_1_4(torch.cat((x, x1, x2, x3), dim=1))
x = self.conv3(x4)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = self.fc2(x)
return x
class MyEstimator(BaseEstimator):
def __init__(self, lr=0.01, epochs=10, batch_size=32):
self.lr = lr
self.epochs = epochs
self.batch_size = batch_size
self.model = MyModel()
def fit(self, X, y):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9)
self.model.train()
for epoch in range(self.epochs):
running_loss = 0.0
for i, data in enumerate(zip(X, y)):
inputs, labels = data
inputs = inputs.unsqueeze(1)
optimizer.zero_grad()
outputs = self.model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch [%d], loss: %.3f' % (epoch+1, running_loss/len(X)))
return self
def predict(self, X):
self.model.eval()
inputs = X.unsqueeze(1)
outputs = self.model(inputs)
_, predicted = torch.max(outputs.data, 1)
return predicted
```
在这个例子中,我们定义了一个 MyModel 类来表示我们的模型,并在其中实现了 forward 方法。我们还定义了一个 MyEstimator 类来表示我们的 estimator,并在其中实现了 fit 和 predict 方法。
在 fit 方法中,我们使用 PyTorch 的优化器和损失函数来训练模型。在每个 epoch 中,我们将数据集分割成批次,然后进行正向传递、反向传递和梯度更新。我们还计算了每个 epoch 的平均损失,并将其打印出来。
在 predict 方法中,我们使用训练好的模型对输入进行推断,并返回预测结果。
注意,这个示例中只是一个简单的例子,实际上你可能需要根据你的模型和任务来修改一些细节,例如损失函数、优化器、批量大小等。
阅读全文