请把下面这段改写加入正则处理 : # 如果用我的模型,改为 residuals = y_test - y_hat residuals = y_test - y_hat # 使用GARCH模型对8步预测结果进行修正 garch = arch.arch_model(residuals, vol='GARCH') res = garch.fit() y_test1 后8个数是我的模型预测值 # 假设 y_test1 是原始预测值,res 是 GARCH 模型的拟合结果 y_hat_corrected = y_test1 + res.conditional_volatility[-8:]
时间: 2024-03-04 14:49:06 浏览: 79
可以将上述代码修改为如下形式,加入对残差数据的正则化处理:
```python
import numpy as np
import pandas as pd
import arch
# 如果用我的模型,改为 residuals = y_test - y_hat
residuals = y_test - y_hat
# 对残差数据进行正则化处理
log_diff_residuals = np.log(residuals).diff().dropna()
# 使用GARCH模型对差分数据进行拟合
garch = arch.arch_model(log_diff_residuals, vol='GARCH')
res = garch.fit()
# 反向正则化得到修正后的预测值
y_hat_corrected = y_test1 + np.exp(log_diff_residuals.cumsum()) * res.conditional_volatility[-8:].values
```
这里首先对残差数据进行了正则化处理,然后使用GARCH模型对差分数据进行拟合,得到波动性的条件方差。最后,使用反向正则化公式将条件方差应用到原始预测值上,得到修正后的预测值。需要注意的是,这里使用了差分数据的累计和,将其反向正则化得到真实的预测值。
相关问题
具体到这个例子,如何修改: import numpy as np import pandas as pd import arch # 如果用我的模型,改为 residuals = y_test - y_hat residuals = y_test - y_hat # 对残差数据进行正则化处理 log_diff_residuals = np.log(residuals).diff().dropna() # 使用GARCH模型对差分数据进行拟合 garch = arch.arch_model(log_diff_residuals, vol='GARCH') res = garch.fit() # 反向正则化得到修正后的预测值 y_hat_corrected = y_test1 + np.exp(log_diff_residuals.cumsum()) * res.conditional_volatility[-8:].values
如果要确保 `y_hat_corrected` 只能是正数,可以考虑对 `log_diff_residuals` 进行平方根变换来进行调整。具体地,可以将以下这行代码:
```
log_diff_residuals = np.log(residuals).diff().dropna()
```
修改为:
```
log_diff_residuals = np.sqrt(np.abs(np.log(residuals)).diff().dropna()) * np.sign(np.log(residuals).diff().dropna())
```
这里的 `np.abs()` 函数是用来获取绝对值,`np.sign()` 函数是用来获取符号,这样就可以保证调整后的值是正数。然后,将以下这行代码:
```
y_hat_corrected = y_test1 + np.exp(log_diff_residuals.cumsum()) * res.conditional_volatility[-8:].values
```
修改为:
```
y_hat_corrected = y_test1 + np.power(np.exp(np.power(log_diff_residuals.cumsum(), 2)), 1/2) * res.conditional_volatility[-8:].values
```
这里的 `np.power()` 函数是用来进行平方根运算的,这样就可以保证 `y_hat_corrected` 是正数。
残差是这样的: residuals = y_test - y_hat ,请写出正则和反向正则
对于残差数据`residuals`,可以使用如下的正则化公式进行处理:
```python
import numpy as np
# 对残差数据进行正则化处理
log_diff_residuals = np.log(residuals).diff().dropna()
```
这里使用了与上面的回答中相同的方法,对残差数据`residuals`进行了取对数差分的正则化处理。
对于正则化后的差分数据`log_diff_residuals`,可以使用如下的反向正则化公式进行处理:
```python
# 对差分数据进行反向正则化处理,得到真实的预测值
forecast = np.exp(y_hat.iloc[-1]) * np.exp(log_diff_residuals.cumsum()) + y_hat.iloc[-1]
```
这里使用了差分数据的累计和,将其反向正则化得到真实的预测值。需要注意的是,这里使用了`y_hat`作为初始值,因为差分数据没有包含初始值的信息。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)