# 得到模型的预测值 forecast = stepwise_model.predict_in_sample() # 计算标准化残差 standardized_resid = (model_resid - forecast) / AGresult.conditional_volatility resid_lb = acorr_ljungbox(standardized_resid, lags=10) # 残差序列的自相关图和偏自相关图 fig, ax = plt.subplots(nrows=2, figsize=(10, 8)) fig.subplots_adjust(hspace=0.5) ax[0].plot(resid_lb) ax[0].set_title('Residuals of ARIMA-GARCH Model') ax[1] = plot_acf(resid_lb, ax=ax[1], lags=10) plt.show()问题在哪怎么改

时间: 2024-02-20 08:56:09 浏览: 20
根据你提供的代码和错误信息,可以看出问题出在这段代码中: ``` ax[0].plot(resid_lb) ax[0].set_title('Residuals of ARIMA-GARCH Model') ax[1] = plot_acf(resid_lb, ax=ax[1], lags=10) ``` 其中 `resid_lb` 是使用 `acorr_ljungbox` 函数计算的残差序列的统计量,但是这里的 `plot_acf` 函数需要的是一个时间序列的数据,因此需要把 `resid_lb` 转换成一个时间序列的数据。 可以尝试把 `resid_lb` 替换为 `standardized_resid`,即: ``` ax[0].plot(standardized_resid) ax[0].set_title('Residuals of ARIMA-GARCH Model') ax[1] = plot_acf(standardized_resid, ax=ax[1], lags=10) ``` 这样就可以把标准化残差作为时间序列数据进行自相关图和偏自相关图的绘制了。
相关问题

import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from arch import arch_model # 读取数据 data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True) data = data[['F4']] data = data.dropna() # 拆分训练集和测试集 train_data = data[:'2022-06-15'] test_data = data['2022-06-16':] # ARIMA模型 arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit() # GARCH模型 garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit() # 预测 forecast_mean = arima_model.forecast(steps=len(test_data))[0] forecast_vol = garch_model.forecast(horizon=len(test_data)) # 计算置信区间 forecast_upper = forecast_mean + 1.96 * forecast_vol.mean forecast_lower = forecast_mean - 1.96 * forecast_vol.mean # 绘制预测结果 plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility sm.stats.acorr_ljungbox(resid, lags=[10])这段代码的问题

这段代码的主要问题是在导入模块时没有使用正确的语法,应该在每行语句之间添加换行符。另外,最后一行代码没有输出检验结果。正确的代码应该是这样的: ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from arch import arch_model # 读取数据 data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True) data = data[['F4']] data = data.dropna() # 拆分训练集和测试集 train_data = data[:'2022-06-15'] test_data = data['2022-06-16':] # ARIMA模型 arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit() # GARCH模型 garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit() # 预测 forecast_mean = arima_model.forecast(steps=len(test_data))[0] forecast_vol = garch_model.forecast(horizon=len(test_data)) # 计算置信区间 forecast_upper = forecast_mean + 1.96 * forecast_vol.mean forecast_lower = forecast_mean - 1.96 * forecast_vol.mean # 绘制预测结果 plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility lb_test = sm.stats.acorr_ljungbox(resid, lags=[10]) print(lb_test) ``` 这样修改后,代码就可以正常执行了。

# 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=True, d=1, D=1, max_P=15, max_Q=15, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False, max_order=None) model_resid = stepwise_model.resid() print(stepwise_model.summary()) model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', o=0) # 使用 auto_arima 函数自动确定 p 和 q 的值 stepwise_fit = auto_arima(model_resid, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=True, max_P=15, max_Q=15, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False, max_order=None) # 根据自动确定的 p 和 q 的值来拟合模型 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=stepwise_fit.order[1], q=stepwise_fit.order[2], o=0) AGresult = model.fit(disp='off') print(AGresult.summary())后面加上得到标准化残差的代码

如果你想得到标准化残差,可以在自动选择 ARIMA 模型之后,使用 `stepwise_model.predict_in_sample()` 得到模型的预测值,然后用 `model_resid` 减去预测值,再除以模型的标准差 `AGresult.conditional_volatility`,即可得到标准化残差。示例代码如下: ``` # 得到模型的预测值 forecast = stepwise_model.predict_in_sample() # 计算标准化残差 standardized_resid = (model_resid - forecast) / AGresult.conditional_volatility ```

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data2 = pd.read_excel # 将数据转换为时间序列 data['DATE'] = pd.to_datetime(data['DATE']) # data.set_index('DATE', inplace=True) data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data # Ljung-Box检验 # result = acorr_ljungbox(data, lags=10) # print('Ljung-Box Statistics: ', result[0]) # print('p-values: ', result[1]) # 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=True) model_resid = stepwise_model.resid() print(stepwise_model.summary()) # 计算ARIMA-GARCH组合模型的参数 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=1, o=0, q=1) AGresult = model.fit(disp='off') print(AGresult.summary())在代码后面加上计算预测值和真实值的MSE

请给我修改后的这份代码,使它的模型评价高于0.6 import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score 读取训练集和测试集数据 data_hk = pd.read_csv("员工满意度_train.csv", engine='python') 填充缺失值 data_hk.fillna(0, inplace=True) data_hk = data_hk.drop(labels=['division'],axis=1) 将分类特征进行编码 encoder = LabelEncoder() data_hk['package'] = encoder.fit_transform(data_hk['package'].astype(str)) 划分训练集和验证集 X_train, X_test, y_train, y_test = train_test_split(data_hk.iloc[:, 0:-1], data_hk.iloc[:, -1], test_size=0.45, random_state=10) 模型训练 model = KNeighborsClassifier(n_neighbors=4) model.fit(X_train, y_train) 读取测试集数据 forecast_hk = pd.read_csv("员工满意度_test_nolabel.csv", engine='python') forecast_hk = forecast_hk.drop(labels=['division'],axis=1) forecast_hk.fillna(0, inplace=True) forecast_hk['package'] = encoder.transform(forecast_hk['package'].astype(str)) 在测试集上进行预测 y_predict = model.predict(forecast_hk) 将预测结果添加到测试集中 forecast_hk['salary'] = y_predict forecast_hk.to_csv("员工满意度_test_nolabel.csv", index=False) 在验证集上进行预测和评估 y_pred_test = model.predict(X_test) score = f1_score(y_test, y_pred_test, average='macro') print("模型评价(f1-score):", score)

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, classification_report, accuracy_score # 1. 数据准备 train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test_noLabel.csv') # 填充缺失值 train_data.fillna(train_data.mean(), inplace=True) test_data.fillna(test_data.mean(), inplace=True) # 2. 特征工程 X_train = train_data.drop(['Label', 'ID'], axis=1) y_train = train_data['Label'] X_test = test_data.drop('ID', axis=1) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 3. 模型建立 model = RandomForestClassifier(n_estimators=100, random_state=42) # 4. 模型训练 model.fit(X_train, y_train) # 5. 进行预测 y_pred = model.predict(X_test) # 6. 保存预测结果 df_result = pd.DataFrame({'ID': test_data['ID'], 'Label': y_pred}) df_result.to_csv('forecast_result.csv', index=False) # 7. 模型评估 y_train_pred = model.predict(X_train) print('训练集准确率:', accuracy_score(y_train, y_train_pred)) print('测试集准确率:', accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) # 8. 绘制柱形图 feature_importances = pd.Series(model.feature_importances_, index=X_train.columns) feature_importances = feature_importances.sort_values(ascending=False) plt.figure(figsize=(10, 6)) sns.barplot(x=feature_importances, y=feature_importances.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title('Visualizing Important Features') plt.show() # 9. 对比类分析 train_data['Label'].value_counts().plot(kind='bar', color=['blue', 'red']) plt.title('Class Distribution') plt.xlabel('Class') plt.ylabel('Frequency') plt.show()

最新推荐

recommend-type

华为OD机试D卷 - 在字符串中找出连续最长的数字串(含“+-”号) - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

node-v6.11.0-linux-armv7l.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

23-22.渗透测试-敏感信息收集工具汇总.mp4

23-22.渗透测试-敏感信息收集工具汇总.mp4
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这