plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') forecast_upper = forecast_upper.to_numpy().ravel() forecast_lower = forecast_lower.to_numpy().ravel() plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility lb_test = sm.stats.acorr_ljungbox(resid, lags=[10]) print(lb_test)
时间: 2023-12-06 12:44:11 浏览: 92
ARIMA.zip_arima_python arima_pytho实现SARIMA_时间序列_时间序列分析
这段代码是用来展示时间序列预测结果并进行数据检验的。首先,使用 `plt.plot()` 函数绘制了实际数据和预测数据的曲线,并使用 `plt.fill_between()` 函数填充了预测数据的置信区间。然后,使用 `sm.stats.acorr_ljungbox()` 函数对模型的残差进行 Ljung-Box 检验,以评估模型的拟合效果。其中,`resid` 是 ARIMA-GARCH 模型的残差序列,`lb_test` 返回了经过 Ljung-Box 检验后的统计量和 p 值。
阅读全文