请逐行解释此代码 # 单指数平滑 def exponential_smoothing(series, alpha): """ series - dataset with timestamps alpha - float [0.0, 1.0], smoothing parameter """ result = [series[0]] # first value is same as series for n in range(1, len(series)): result.append(alpha * series[n] + (1 - alpha) * result[n-1]) return result def plotExponentialSmoothing(series, alphas): """ Plots exponential smoothing with different alphas series - dataset with timestamps alphas - list of floats, smoothing parameters """ with plt.style.context('seaborn-white'): plt.figure(figsize=(15, 7)) for alpha in alphas: plt.plot(exponential_smoothing(series, alpha), label="Alpha {}".format(alpha)) plt.plot(series.values, "c", label = "Actual") plt.legend(loc="best") plt.axis('tight') plt.title("Exponential Smoothing") plt.grid(True); plotExponentialSmoothing(data['trend'], [0.5, 0.1])

时间: 2024-02-14 14:31:54 浏览: 251
ZIP

randraw.zip_Pareto-Fisher_nakagami_quadratic_truncated pareto_vo

这段代码实现了单指数平滑(exponential smoothing方法,并提供了一个用于绘制定平滑参数下的平滑曲线的函数。 下面是对代码的逐行解释: 1.def exponential_smoothing(series, alpha):`:定义了一个名为`exponential_smoothing`的函数,接受两个参数:`series`表示带有时间戳的数据集,`alpha`表示平滑参数。 2. `result = [series[0]]`:初始化结果列表,将第一个观测值作为初始值。 3. `for n in range(1, len(series)):`:循环迭代数据集,从第二个观测值开始。 4. `result.append(alpha * series[n] + (1 - alpha) * result[n-1])`:使用指数平滑公式计算当前观测值的平滑结果,将结果添加到结果列表中。 5. `return result`:返回计算得到的平滑结果列表。 6. `def plotExponentialSmoothing(series, alphas):`:定义了一个名为`plotExponentialSmoothing`的函数,接受两个参数:`series`表示带有时间戳的数据集,`alphas`表示平滑参数的列表。 7. `with plt.style.context('seaborn-white'):`:使用seaborn-white风格的绘图环境。 8. `plt.figure(figsize=(15, 7))`:创建一个大小为15x7的图形窗口。 9. `for alpha in alphas:`:遍历平滑参数列表。 10. `plt.plot(exponential_smoothing(series, alpha), label="Alpha {}".format(alpha))`:绘制使用指定平滑参数进行平滑的曲线,并为每条曲线添加标签。 11. `plt.plot(series.values, "c", label = "Actual")`:绘制原始数据的曲线,以蓝绿色显示,并添加标签。 12. `plt.legend(loc="best")`:显示图例,位置为最佳位置。 13. `plt.axis('tight')`:调整坐标轴范围,使曲线填充整个图形窗口。 14. `plt.title("Exponential Smoothing")`:设置图形的标题为"Exponential Smoothing"。 15. `plt.grid(True)`:显示网格线。 16. `plotExponentialSmoothing(data['trend'], [0.5, 0.1])`:调用`plotExponentialSmoothing`函数,传入数据集和平滑参数列表来绘制指数平滑曲线。
阅读全文

相关推荐

import pandas as pd from pyecharts import options as opts from pyecharts.charts import Line # 读取Excel文件 data = pd.read_excel('6004020918.xlsx') # 提取数据 week = data['week'] need = data['need'] # 定义三步指数平滑函数 def triple_exponential_smoothing(series, alpha, beta, gamma, n_preds): result = [series[0]] season_length = len(series) // n_preds # 初始化水平、趋势和季节性指数 level, trend, season = series[0], series[1] - series[0], sum(series[:season_length]) / season_length for i in range(1, len(series) + n_preds): if i >= len(series): # 预测新值 m = i - len(series) + 1 result.append(level + m * trend + season) else: # 更新水平、趋势和季节性指数 value = series[i] last_level, level = level, alpha * (value - season) + (1 - alpha) * (level + trend) trend = beta * (level - last_level) + (1 - beta) * trend season = gamma * (value - level) + (1 - gamma) * season result.append(level + trend + season) return result # 设置三步指数平滑法参数 alpha = 0.2 beta = 0.3 gamma = 0.4 n_preds = 77 # 预测的值数量 # 进行三步指数平滑预测 predictions = triple_exponential_smoothing(need[:100], alpha, beta, gamma, n_preds) # 创建折线图对象 line = Line() line.set_global_opts(title_opts=opts.TitleOpts(title='时间序列预测分析'), legend_opts=opts.LegendOpts(data=['预测值', '实际值'])) # 添加预测值数据 line.add_xaxis(week[100:177]) line.add_yaxis('预测值', predictions, is_smooth=True) # 添加实际值数据 line.add_yaxis('实际值', need[100:177], is_smooth=True) # 生成HTML文件 line.render('time_series_forecast.html')这个代码出现了TypeError: init() got an unexpected keyword argument 'data'这个问题,把修改好的代码给我

import pandas as pd from pyecharts import options as opts from pyecharts.charts import Line 读取Excel文件 data = pd.read_excel('6004020918.xlsx') 提取数据 week = data['week'] need = data 定义三步指数平滑函数 def triple_exponential_smoothing(series, alpha, beta, gamma, n_preds): result = [series[0]] season_length = len(series) // n_preds # 初始化水平、趋势和季节性指数 level, trend, season = series[0], series[1] - series[0], sum(series[:season_length]) / season_length for i in range(1, len(series) + n_preds): if i >= len(series): # 预测新值 m = i - len(series) + 1 result.append(level + m * trend + season) else: # 更新水平、趋势和季节性指数 value = series[i] last_level, level = level, alpha * (value - season) + (1 - alpha) * (level + trend) trend = beta * (level - last_level) + (1 - beta) * trend season = gamma * (value - level) + (1 - gamma) * season result.append(level + trend + season) return result 设置三步指数平滑法参数 alpha = 0.2 beta = 0.3 gamma = 0.4 n_preds = 77 # 预测的值数量 进行三步指数平滑预测 predictions = triple_exponential_smoothing(need[:100], alpha, beta, gamma, n_preds) 创建折线图对象 line = Line() line.set_global_opts( title_opts=opts.TitleOpts(title='时间序列预测分析'), legend_opts=opts.LegendOpts(pos_top='5%'), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") ) 添加预测值数据 line.add_xaxis(week[100:177]) line.add_yaxis('预测值', predictions, is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) 添加实际值数据 line.add_yaxis('实际值', need[100:177], is_smooth=True, label_opts=opts.LabelOpts(is_show=False)) 生成HTML文件 line.render('time_series_forecast.html')我希望在图中显示的实际值从数据的初始开始,一直绘制到177周,同样,预测的也要从第一周开始预测,预测出第一周到第177周的结果并在图中呈现,如果三步指数平滑法的代码不对你可以进行修改,但是要是三步指数平滑法,把修改好的代码给我

for i in range(N): arrival_lambda[i] = 1 + 0.1 * i for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx,:] = Q[i_idx-1,:] + dataA[i_idx-1,:] - rate[i_idx-1,:] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx,Q[i_idx,:]<0] =0 Y[i_idx,:] = np.maximum(Y[i_idx-1,:] + (energy[i_idx-1,:]- energy_thresh)*nu,0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx,Y[i_idx,:]<0] =0#防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.append(m_list[k_idx_his[-1]])#将m_list最后一条历史消息添加到历史消息列表中。 # 存储最大结果 Obj[i_idx],rate[i_idx,:],energy[i_idx,:] = r_list[k_idx_his[-1]]怎么修改代码使得队列Q、Y变化且代码不考虑队列积压

for i in range(n): if i % (n//10) == 0: print("%0.1f"%(i/n))#每当完成总任务的10%输出 if i> 0 and i % Delta == 0: # 索引从零开始计数 if Delta > 1: max_k = max(np.array(k_idx_his[-Delta:-1])%K) +1 else: max_k = k_idx_his[-1] +1 K = min(max_k +1, N)#根据历史记录动态调整K的值,以使其能够适应数据流的变化。如果数据流的变化比较平稳,则K的值不会经常变化,这样可以避免频繁的参数更新。如果数据流的变化比较剧烈,则K的值会相应地进行调整,以更好地适应新的数据分布 i_idx = i # 实时信道生成 h_tmp = racian_mec(h0,0.3)#使用Rician衰落模型后的增益值 # 将h0增长到1,以便更好的训练; 这是深度学习中广泛采用的一种技巧 h = h_tmp*CHFACT channel[i,:] = h #变量h_tmp乘以常数CHFACT,然后将结果存储到变量h中。接着,将h赋值给二维数组channel的第i行,获取信道增益值 # 实时到达生成 dataA[i,:] = np.random.exponential(arrival_lambda) # 4) LyDROO的排队模型 if i_idx > 0: # 更新队列 Q[i_idx, :] = Q[i_idx - 1, :] + dataA[i_idx - 1, :] - rate[i_idx - 1, :] # 当前队列 # 由于浮点错误,断言Q是正的 Q[i_idx, Q[i_idx, :] < 0] = 0 Y[i_idx, :] = np.maximum(Y[i_idx - 1, :] + (energy[i_idx - 1, :] - energy_thresh) * nu, 0) # 当前能量队列 # 由于浮点错误,断言Y是正的 Y[i_idx, Y[i_idx, :] < 0] = 0 # 防止浮点错误 # 缩放Q和Y到接近1;深度学习技巧 nn_input =np.concatenate( (h, Q[i_idx,:]/10000,Y[i_idx,:]/10000)) # Actor module m_list = mem.decode(nn_input, K, decoder_mode) r_list = [] # 所有候选卸载模式的结果 v_list = [] # 候选卸载模式的目标值 for m in m_list: # Critic module # 为保存在m_list中的所有生成的卸载模式分配资源 r_list.append(Algo1_NUM(m,h,w,Q[i_idx,:],Y[i_idx,:],V)) v_list.append(r_list[-1][0]) # 记录最大奖励指数 k_idx_his.append(np.argmax(v_list)) # Policy update module # 编码最大奖励模式 mem.encode(nn_input, m_list[k_idx_his[-1]]) mode_his.a

zip

最新推荐

recommend-type

精选微信小程序源码:生鲜商城小程序(含源码+源码导入视频教程&文档教程,亲测可用)

微信小程序是一种轻量级的应用开发平台,主要针对移动端,由腾讯公司推出,旨在提供便捷的线上服务体验。在这个“微信小程序生鲜商城小程序源码”中,包含了一系列资源,帮助开发者或商家快速搭建自己的生鲜电商平台。 源码是程序的核心部分,它是由编程语言编写的指令集,用于控制计算机执行特定任务。在这个项目中,源码是实现生鲜商城功能的基础,包括用户界面设计、商品浏览、购物车管理、订单处理、支付接口集成等模块。开发者可以通过查看和修改源码,根据自己的需求进行定制化开发,比如调整界面风格、添加促销活动、优化支付流程等。 源码导入视频教程与文档教程则是学习和部署这些源码的关键。视频教程通常通过视觉演示,详细展示如何将源码导入到微信开发者工具中,设置项目环境,调试代码,以及解决可能出现的问题。这对于不熟悉小程序开发的初学者来说,是非常实用的学习资源。文档教程则可能更侧重于文字解释和步骤指导,对于需要查阅特定信息或在遇到问题时进行查证很有帮助。 “详细图文文档教程.doc”很可能是对整个源码结构、功能模块和操作步骤的详细说明,包括如何配置数据库连接、设置API接口、调整页面布局等。文档中的图文结合可以清晰
recommend-type

Docker-compose容器编排

微服务改造升级并生成新镜像
recommend-type

整合Springboot shiro jpa mysql 实现权限管理系统(附源码地址)

整合Springboot shiro jpa mysql 实现权限管理系统(附源码地址)
recommend-type

自定义图片裁剪View

自定义图片裁剪View
recommend-type

421个地级市1949-2020年全要素生率(年度数据)-最新出炉.zip

1、资源特点 全新整理:今年全新力作,手工精心打磨。 权威数据:数据来自权威渠道,精准可靠。 放心引用:杜绝数据造假,品质保证。 2、适用人群 在校专科生、本科生、研究生、大学教师、学术科研工作者 3、适用专业 经济学、地理学、城市规划、公共政策、社会学、商业管理、工商管理等
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。