# 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=True, d=1, D=1, max_P=15, max_Q=15, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False, max_order=None) model_resid = stepwise_model.resid() print(stepwise_model.summary()) model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', o=0) # 使用 auto_arima 函数自动确定 p 和 q 的值 stepwise_fit = auto_arima(model_resid, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=True, max_P=15, max_Q=15, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False, max_order=None) # 根据自动确定的 p 和 q 的值来拟合模型 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=stepwise_fit.order[1], q=stepwise_fit.order[2], o=0) AGresult = model.fit(disp='off') print(AGresult.summary())后面加上得到标准化残差的代码
时间: 2023-11-24 19:06:00 浏览: 165
arima.rar_arima matlab_auto regressive_回归_平均模型_移动 模型
如果你想得到标准化残差,可以在自动选择 ARIMA 模型之后,使用 `stepwise_model.predict_in_sample()` 得到模型的预测值,然后用 `model_resid` 减去预测值,再除以模型的标准差 `AGresult.conditional_volatility`,即可得到标准化残差。示例代码如下:
```
# 得到模型的预测值
forecast = stepwise_model.predict_in_sample()
# 计算标准化残差
standardized_resid = (model_resid - forecast) / AGresult.conditional_volatility
```
阅读全文