深度学习的多模态权重语音情感识别代码
时间: 2023-06-25 19:06:15 浏览: 156
一种神经网络的语音情感识别.zip_情感_情感识别_神经网络_语音神经网络
5星 · 资源好评率100%
多模态情感识别是一种基于多个感官信息(如语音、文本、图像等)的情感分析。在深度学习中,可以使用多个神经网络模型来处理不同的感官输入,并将它们的输出结合起来进行情感分类。
以下是一个基于语音输入的情感识别代码示例:
```python
# 导入必要的库
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Conv2D, Flatten, MaxPooling2D
# 加载数据集
train_data = np.load('train_data.npy')
train_labels = np.load('train_labels.npy')
test_data = np.load('test_data.npy')
test_labels = np.load('test_labels.npy')
# 定义模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(40, 40, 1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(train_data, train_labels, epochs=10, batch_size=32, validation_data=(test_data, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_data, test_labels)
print('Test accuracy:', test_acc)
```
在上面的代码中,我们使用了一个包含两个卷积层和一个全连接层的简单CNN模型来处理语音输入。我们先将语音数据进行MFCC特征提取,然后将其转换为一个40x40的图像,最后将其输入到CNN模型中进行情感分类。
此外,我们还需要使用其他模型来处理其他感官输入,并将它们的输出结合起来进行情感分类。例如,我们可以使用一个LSTM模型来处理文本输入,使用一个卷积神经网络模型来处理图像输入。最后,我们可以使用一个多层感知器模型来将它们的输出结合起来进行情感分类。
阅读全文