def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] channel_out = None for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i][0](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) l_features[i] = self.SA_modules[i][1](l_features[i]) #SelfAttention模块需要传入的参数为输入特征向量l_features[i] for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]为什么self.SA_modules[i][1](l_features[i])中的l_features[i]被提示为空

时间: 2023-06-27 15:07:51 浏览: 79
根据代码,`l_features`是一个列表,包含了每个SA模块的输出特征向量,而在`self.SA_modules[i][1](l_features[i])`中,`l_features[i]`所代表的是第i个SA模块的输出特征向量,但在循环的第一次迭代中,`l_features[i]`的值没有被更新,因此会提示为空。可以在循环开始前先将`l_features`的第一个元素设为`features`,即可避免这个问题,例如: ``` l_xyz, l_features = [xyz], [features] channel_out = None # 先将第一个特征向量加入列表 l_features.append(self.SA_modules[0][1](features)) for i in range(1, len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i][0](l_xyz[i-1], l_features[i-1]) l_xyz.append(li_xyz) l_features.append(li_features) l_features[i] = self.SA_modules[i][1](l_features[i]) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0] ```
阅读全文

相关推荐

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的 SA_modules的forward函数接受几个参数,为什么

最新推荐

recommend-type

2023年全国大学生英语竞赛样题(C类)样题答案及听力原文.pdf

2023年全国大学生英语竞赛样题(C类)样题答案及听力原文
recommend-type

出纳考核表.xls

出纳考核表
recommend-type

基于多种天气因素的光伏电站太阳能辐射量预测系统-采用人工神经网络与离线优化算法,MATLAB代码:考虑多种天气条件下光伏电站太阳能辐射量预测 关键词:辐射量预测 光伏预测 多种天气因素 参考文档:

基于多种天气因素的光伏电站太阳能辐射量预测系统——采用人工神经网络与离线优化算法,MATLAB代码:考虑多种天气条件下光伏电站太阳能辐射量预测 关键词:辐射量预测 光伏预测 多种天气因素 参考文档:《Solar Radiation Prediction and Energy Allocation for Energy Harvesting Base Stations》 仿真平台:MATLAB+CPLEX 平台 优势:代码具有一定的深度和创新性,注释清晰,非烂大街的代码,非常精品 主要内容:代码主要做的是如何利用预测光伏电站太阳能辐射量的问题,利用人工神经网络对对其内太阳辐射量进行预测,并对无云天气以及多云天气进行了分别讨论,与线性模型相比该模型具有更好的性能,除此之外,代码还研究了太阳能的分配问题,采用离线优化算法和四种在线启发式算法分别进行分配策略的优化,并利用太阳辐射数据评估了算法的性能。 该代码适合新手学习以及在此基础上进行拓展,代码质量非常高,出图效果极佳 ,核心关键词: 1. 光伏电站太阳能辐射量预测 2. 多种天气因素 3. 人工神经网络 4. 预测模型 5. 线性
recommend-type

数据结构实验实习指导书(c语言)

数据结构实验实习指导书(c语言)
recommend-type

游戏 生存小游戏.exe

"lyh不会打代码"生存小有戏改版
recommend-type

深入探索CSS拉特测试方法

根据提供的文件信息,我们无法获取具体的文件内容,因此,需要从文件的标题“拉特测试”,描述“拉特测试”,标签“CSS”,以及压缩包子文件的文件名称列表“lat-test-main”来推断相关的知识点。鉴于这些信息量有限,我们将主要围绕“拉特测试”这一主题进行探讨,同时也会涉及CSS相关内容。 首先,“拉特测试”可能指的是某种特定的软件测试方法或者技术评估流程。考虑到文件名“lat-test-main”暗示它可能是某个项目的主要测试文件,我们可以合理推测“拉特测试”可能是测试的代码脚本、测试用例集合、或者是与测试相关的配置文件。但在没有更多上下文的情况下,很难确定“拉特测试”具体指代的是什么。 接下来,我们讨论“CSS”。CSS是“层叠样式表(Cascading Style Sheets)”的缩写,是一种用于控制网页外观和布局的技术标准。CSS描述了如何在屏幕上,纸张上,或在其他媒体上展现HTML或XML(包括各种XML方言,比如SVG或XHTML)文档。它使开发者能够将内容与表现分离,这有助于对网站进行修改,而无需触及内容本身。CSS的规则由选择器和声明块组成。选择器指明了样式规则应该应用于哪些HTML元素,而声明块则包含了一个或多个用分号隔开的属性值对。 然而,由于标题、描述和标签并没有直接提供关于CSS的具体信息,我们也无法确定CSS在“拉特测试”中扮演的具体角色。不过,假设CSS标签意味着测试可能与网页的样式表或者前端设计有关,那么我们可以想象,测试可能涵盖了对网页样式的验证、对布局的测试、对交互效果的检查等。 在开发和测试过程中,CSS的正确性至关重要。以下是一些与CSS相关的测试方法: 1. CSS验证测试:确保CSS代码符合标准,并且没有语法错误。可以使用在线工具如W3C的CSS验证服务进行。 2. 兼容性测试:检查网站在不同的浏览器和设备上显示的一致性。由于浏览器对CSS的支持存在差异,这一步骤十分重要。 3. 性能测试:分析CSS文件的大小、复杂度以及下载和渲染时间,优化这些性能指标以提高网页加载速度。 4. 可访问性测试:确保网站对不同需求的用户,包括有视觉障碍的用户,是易于导航和使用的。 5. 单元测试:对于使用CSS预处理器或编译工具生成最终样式表的情况,单元测试可以确保这些工具的正确性。 6. 功能测试:检查网页上的样式元素是否按照设计实现,比如字体、颜色、布局和其他视觉效果。 由于“lat-test-main”暗示这是一个主要的测试文件,它可能包含了上述测试方法中的一种或多种的实现。在实际开发过程中,测试通常是在版本控制系统的支持下进行的,比如Git,它可以帮助团队成员管理不同的测试版本,并跟踪代码更改。 综上所述,关于“拉特测试”和“CSS”的知识点集中在测试方法和样式表的应用上。不过,为了更准确地描述“拉特测试”的含义,我们需要更多的上下文信息或者直接访问相关的文件内容。在实际工作中,了解项目需求、测试目标和环境配置对于成功地实施测试计划至关重要。
recommend-type

新唐IAP概念解析

# 摘要 IAP(In-Application Programming)编程是一种在应用运行时更新固件的先进方法,它提供了系统更新的灵活性和便利性。本文全面介绍了IAP编程的概念、技术基础和实践应用,重点分析了IAP在新唐微控制器中的实现机制,包括其内存结构和工作流程,并探讨了软件工具和开发环境的配置。同时,本文通过实际案例深入研究了IAP开发流程、安全性和错误处理策略,以及在物联网设备和智能家居等领域的高级应用。最后,针对IAP项目的管
recommend-type

fix_eco_timing 写出脚本

`fix_eco_timing`这个名字看起来像是用于某种特定环境下的脚本,比如可能是用于调整电子组件或电子产品的工作周期优化能源效率的一种工具。然而,没有具体的上下文,很难提供详细的脚本内容。通常这样的脚本可能会包含以下几个部分: ```bash #!/bin/bash # Fix Eco Timing Script # 1. 获取当前设备状态 device_status=$(get_device_status) # 2. 检查是否达到节能模式条件 if [ "$device_status" == "idle" ]; then # 3. 调整工作频率或电源管理设置 ad
recommend-type

BTS SIO培训生Youcef Tarfa的个人投资组合网站

根据提供的文件信息,我们可以推断出一些关键知识点: ### 标题知识点: 1. **个人投资组合网站**:标题中的“Youceftarfa.github.io”表明这是一个在线的个人投资组合网站,这通常用于展示个人的项目、经验和技能。个人投资组合网站是专业IT人士用来向潜在雇主、客户或合作伙伴展示他们专业能力的重要工具。 2. **GitHub.io域名**:域名中的“.github.io”意味着这是一个托管在GitHub平台上的个人网站。GitHub不仅提供源代码托管服务,也支持用户通过GitHub Pages功能来发布个人站点,这通常用于开源项目展示、个人简历展示、技术博客等多种用途。 3. **BTS SIO培训生**:这可能是Youcef Tarfa参与的一个培训计划或课程的名称,BTS SIO(Brevet de Technicien Supérieur – Systèmes Informatiques et Logiciels)是法国的一个高等教育文凭,涉及计算机系统和软件。这个标题暗示该网站可能包含了与该培训相关的信息、项目或成果。 ### 描述知识点: 1. **网站内容概述**:“Youcef Tarfa投资组合”部分表明网站集中展示Youcef Tarfa的个人技能、项目和成就。这种网站通常包括技术简历、项目案例、编码示例、教育背景、工作经历等内容。 2. **专业方向**:描述中提到的“BTS SIO培训生”,意味着Youcef Tarfa在计算机系统和软件方面接受过专业的培训,他的投资组合很可能会包括与这些技能相关的项目和经验。 ### 标签知识点: 1. **HTML**:标签“HTML”表明网站的构建过程中使用了超文本标记语言(Hypertext Markup Language),这是建立网站的基础技术之一,用于创建网页和网络应用。 ### 压缩包子文件的文件名称列表知识点: 1. **文件结构**:“Youceftarfa.github.io-main”可能代表了网站源代码的主文件夹名称。在GitHub项目中,通常会有一个名为“main”的主分支,代表当前开发的稳定版本。 2. **项目组织**:文件名称中的“main”暗示了该文件夹可能包含网站的主要文件,如HTML文件、样式表(CSS)、JavaScript文件以及可能的图片和资源文件等。它们是构成网站前端的要素,决定了网站的结构和外观。 ### 综合分析知识点: - **个人品牌的建立**:通过创建和维护个人投资组合网站,Youcef Tarfa在建立自己的个人品牌方面可能会受益。这样的网站为他提供了一个在线展示自己技能和作品的平台,有助于吸引潜在雇主或合作伙伴的关注。 - **技术展示与实践**:网站内容很可能包括各种技术项目和实践案例,涉及编程、系统管理、软件开发等方面,体现了Youcef Tarfa的技术实力和对BTS SIO课程的深入理解。 - **在线学习与展示的结合**:该网站不仅展示了Youcef Tarfa的学习成果,也为其他学习类似课程的个体提供了一个参考和学习的资源。 - **开源文化和社区贡献**:由于网站托管在GitHub上,这意味着Youcef Tarfa可能接触并参与开源文化。GitHub是全球最大的开源社区,许多开发者在这里共享代码、交流想法、合作解决问题。他的项目可能对开源社区有所贡献,也可能接受其他开发者的帮助和建议。 - **求职工具与职业发展**:该个人投资组合网站可以作为求职工具,为Youcef Tarfa在IT行业的发展助力。通过展示个人技能和项目,他可以吸引潜在雇主,为自己的职业生涯铺路。 ### 结语: 综合以上信息,可以看出这个文件涉及了个人品牌建设、技术展示、开源文化、职业发展等多方面的知识点。对于IT专业人士来说,维护一个内容丰富、结构良好的个人投资组合网站,是提升个人技能展示、扩展职业网络和促进个人职业成长的重要途径。同时,通过参与GitHub这样的开源平台,不仅可以提高自身的技能,还能与全球的开发者共同进步,为软件行业的发展作出贡献。
recommend-type

【医疗设备维修速成秘籍】:从新手到专家的5大必学技巧

# 摘要 本文详细介绍了医疗设备维修的基础知识、设备分类和工作原理、日常保养与故障排查技巧、维修实践操作以及法规遵从与专业发展。通过对医疗设备分类和工作原理的阐述,为维修人员提供了深入理解设备性能与维护要求的基础。同时,结合日常保养的重要性和故障排查的理