雅可比矩阵转置法求逆运动学

时间: 2023-09-27 21:07:35 浏览: 217
雅可比矩阵转置法求逆运动学是一种常用的方法,用于解决机器人运动学问题。首先,我们需要计算雅可比矩阵,它描述了末端执行器的线速度和角速度与关节速度之间的关系。根据引用[2]中的描述,雅可比矩阵的行数等于末端执行器的自由度个数,列数等于关节的个数。 然后,我们可以使用雅可比矩阵的转置来求解逆运动学问题。逆运动学问题是指已知末端执行器的期望位置和姿态,求解关节角度的问题。通过将雅可比矩阵转置后与末端执行器的线速度和角速度相乘,可以得到关节速度的向量。 最后,通过积分关节速度,我们可以得到关节角度的变化量,从而求解出关节角度。这样就完成了雅可比矩阵转置法求逆运动学的过程。 需要注意的是,雅可比矩阵转置法求逆运动学方法在某些情况下可能存在奇异性问题,即雅可比矩阵的行列式为零。在这种情况下,我们需要采取其他方法来解决逆运动学问题。 综上所述,雅可比矩阵转置法是一种常用的求解逆运动学问题的方法,通过计算雅可比矩阵和使用转置运算,可以求解出关节角度。
相关问题

matlab 求雅可比矩阵逆矩阵

### 回答1: 在MATLAB中,要求雅可比矩阵逆矩阵,可以使用“inv()”函数。 首先,需要用“jacobian()”函数来计算雅可比矩阵。雅可比矩阵表示了函数的每个输出值对于每个输入值的偏导数,因此它是一个m×n的矩阵,m为函数的输出数,n为函数的输入数。 例如,如果有一个函数F(x,y,z)=(x2y + 3z, y2z, xz3),则它的雅可比矩阵为: J(x,y,z) = [ 2xy , x2 , 3 ] [ 0 , 2yz , y2 ] [ z3 , 3xz2 , xz3 ] 然后,可以使用“inv()”函数来求雅可比矩阵的逆矩阵。逆矩阵表示了一个矩阵的倒数,即一个矩阵乘以它的逆矩阵等于身份矩阵。如果一个矩阵没有逆矩阵,它被称为奇异矩阵。 下面是在MATLAB中求解雅可比矩阵逆矩阵的步骤: 1. 定义函数F(x,y,z) 2. 计算函数F的雅可比矩阵J(x,y,z):J=jacobian(F,[x y z]) 3. 求雅可比矩阵J的逆矩阵J^-1:J_inv=inv(J) 举个例子,假设要求函数F(x,y)=(x3+y,xy)的雅可比矩阵逆矩阵,代码如下: syms x y F = [x^3+y; x*y]; J = jacobian(F,[x y]) J_inv = inv(J) 输出结果为: J = [ 3*x^2, 1] [ y , x] J_inv = [ 1/(3*x^2+y^2), -1/(3*x^2+y^2)] [ -y/(3*x^2+y^2), x/(3*x^2+y^2)] ### 回答2: 雅可比矩阵(Jacobian Matrix)是用于描述一组向量函数(即含有多个变量的函数)之间的线性映射关系的矩阵。雅可比矩阵在多元微积分、控制理论、机器人学等领域中有着广泛的应用。 在MATLAB中,可以使用“jacobian”函数求取雅可比矩阵。假设有一个向量函数f(x),其中x为n维向量,f(x)也是m维向量,则在MATLAB中可以写为: syms x1 x2 ... xn % 定义符号变量 f = [f1(x1, x2, ..., xn); f2(x1, x2, ..., xn); ...; fm(x1, x2, ..., xn)]; % 定义向量函数f 则,可以使用“jacobian”函数求取f(x)的雅可比矩阵J(x): J = jacobian(f, [x1, x2, ..., xn]); 其中,[x1, x2, …, xn]为变量向量。根据矩阵求逆的公式,J(x)的逆矩阵可以使用“inv”函数求取: J_inv = inv(J); 需要注意的是,求J(x)的逆矩阵时,要确保J(x)是可逆的。也就是说,J(x)的行列式det(J(x))不等于0,否则J(x)的逆矩阵不存在。 总之,MATLAB提供了丰富的工具函数,可以方便地求取雅可比矩阵及其逆矩阵。熟练掌握这些函数的用法,对于进行多元微积分及相关领域的研究和应用都是非常有帮助的。 ### 回答3: 雅可比矩阵是由向量函数的一阶偏导数组成的方阵,表示函数值在输入的每个维度上相对于每个输入变量的导数。雅可比矩阵是很重要的数学工具,在数学、物理学、工程学和计算机科学等领域中都有广泛的应用。在 Matlab 中,我们可以使用“jacobian”函数来计算雅可比矩阵。 当得到雅可比矩阵后,我们可能需要计算其逆矩阵,以便进行后续的计算。计算矩阵的逆矩阵可以使用 Matlab 中的“inv”函数。如果矩阵是可逆的,那么逆矩阵就是存在的,并且可以通过 inv 函数来求解。但需要注意的是,如果矩阵不可逆,则无法计算其逆矩阵。 假设我们要计算如下向量函数的雅可比矩阵和逆矩阵: f(x,y,z) = [x^2 yz sin(z)] 首先,我们需要在 Matlab 中定义这个函数,可以使用匿名函数的方式: f = @(x,y,z) [x^2, y*z, sin(z)]; 然后,我们可以使用“jacobian”函数计算雅可比矩阵: J = jacobian(f, [x,y,z]); 其中,第一个参数是函数的句柄,第二个参数是输入变量的向量。计算完成后,J 将存储函数 f 关于变量 x、y 和 z 的雅可比矩阵。 接下来,我们可以使用“inv”函数计算雅可比矩阵的逆矩阵: J_inv = inv(J); 如果雅可比矩阵不存在逆矩阵,那么这个计算过程将会失败并返回一个错误。所以在实际的计算过程中,需要进行适当的错误检查和处理。 最后,若我们希望使用计算出的雅可比矩阵和逆矩阵进行后续的计算,可以直接调用变量 J 和 J_inv 即可。例如,我们可以使用这些矩阵计算函数的海森矩阵或者进行最优化求解等。

matlab求雅可比矩阵逆矩阵

求雅可比矩阵的方法可以使用 Matlab 自带的 jacobian 函数,该函数可以接受多个参数,其中第一个参数是一个函数句柄,后面的参数是这个函数的输入变量。例如,如果我们要求函数 f(x,y,z) = [x^2+y^2, x*y*z, 2*x+3*y-z] 在点 (1,2,3) 处的雅可比矩阵,则可以使用以下代码: ``` syms x y z f = [x^2+y^2, x*y*z, 2*x+3*y-z]; J = jacobian(f, [x, y, z]); J = subs(J, [x, y, z], [1, 2, 3]) ``` 这里的 `syms x y z` 声明了 x、y、z 为符号变量,而 `subs` 函数用于将符号变量替换为具体的数值,这里将 (1,2,3) 代入计算。 求雅可比矩阵的逆矩阵可以使用 Matlab 自带的 inv 函数,例如: ``` inv(J) ``` 注意,如果雅可比矩阵不是满秩的,那么它的逆矩阵是不存在的,此时可以使用伪逆矩阵(即最小二乘解)来代替。可以使用 Matlab 中的 pinv 函数来求伪逆矩阵。

相关推荐

最新推荐

recommend-type

python实现迭代法求方程组的根过程解析

在求解线性方程组时,通常使用的迭代法包括高斯-塞德尔迭代、雅可比迭代等。 首先,我们来看一个简单的例子,设有一个三元线性方程组: \[ \begin{cases} 8x_1 - 3x_2 + 2x_3 = 20 \\ 4x_1 + 11x_2 - x_3 = 33 \\...
recommend-type

基于java网上球鞋竞拍系统设计与实现.docx

基于java网上球鞋竞拍系统设计与实现.docx
recommend-type

深入理解23种设计模式

"二十三种设计模式.pdf" 在软件工程中,设计模式是解决常见问题的可重用解决方案,它们代表了在特定上下文中被广泛接受的、经过良好验证的最佳实践。以下是二十三种设计模式的简要概述,涵盖了创建型、结构型和行为型三大类别: A. 创建型模式: 1. 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。避免多线程环境下的并发问题,通常通过双重检查锁定或静态内部类实现。 2. 工厂方法模式(Factory Method)和抽象工厂模式(Abstract Factory):为创建对象提供一个接口,但允许子类决定实例化哪一个类。提供了封装变化的平台,增加新的产品族时无须修改已有系统。 3. 建造者模式(Builder):将复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。适用于当需要构建的对象有多个可变部分时。 4. 原型模式(Prototype):通过复制现有的对象来创建新对象,减少了创建新对象的成本,适用于创建相似但不完全相同的新对象。 B. 结构型模式: 5. 适配器模式(Adapter):使两个接口不兼容的类能够协同工作。通常分为类适配器和对象适配器两种形式。 6. 代理模式(Proxy):为其他对象提供一种代理以控制对这个对象的访问。常用于远程代理、虚拟代理和智能引用等场景。 7. 外观模式(Facade):为子系统提供一个统一的接口,简化客户端与其交互。降低了系统的复杂度,提高了系统的可维护性。 8. 组合模式(Composite):将对象组合成树形结构以表示“部分-整体”的层次结构。它使得客户代码可以一致地处理单个对象和组合对象。 9. 装饰器模式(Decorator):动态地给对象添加一些额外的职责,提供了比继承更灵活的扩展对象功能的方式。 10. 桥接模式(Bridge):将抽象部分与实现部分分离,使它们可以独立变化。实现了抽象和实现之间的解耦,使得二者可以独立演化。 C. 行为型模式: 11. 命令模式(Command):将请求封装为一个对象,使得可以用不同的请求参数化其他对象,支持撤销操作,易于实现事件驱动。 12. 观察者模式(Observer):定义对象间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。 13. 迭代器模式(Iterator):提供一种方法顺序访问聚合对象的元素,而不暴露其底层表示。Java集合框架中的迭代器就是典型的实现。 14. 模板方法模式(Template Method):定义一个操作中的算法骨架,而将一些步骤延迟到子类中。使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 15. 访问者模式(Visitor):表示一个作用于某对象结构中的各元素的操作。它可以在不改变各元素的类的前提下定义作用于这些元素的新操作。 16. 责任链模式(Chain of Responsibility):避免将处理逻辑硬编码在一个对象中,将一系列的对象链接起来,形成一条链,沿着链传递请求,直到某个对象处理该请求。 17. 状态模式(State):允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎改变了它的类。 18. 策略模式(Strategy):定义了一系列的算法,并将每一个算法封装起来,使它们可以相互替换。策略对象改变算法的变化,可以影响使用算法的类。 19. 备忘录模式(Memento):在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便以后恢复对象的状态。 20. 解释器模式(Interpreter):提供一个语言的文法表示,并定义了一个解释器,用于解释语言中的句子。 设计模式是软件开发中的一种经验总结,它们可以帮助我们编写更加灵活、可扩展和可维护的代码。理解和掌握这些设计模式,对于提高软件设计能力、优化代码结构、减少重复工作具有重要意义。在实际开发中,根据具体场景选择合适的设计模式,可以使代码更具可读性和可复用性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【编程实战】:打造健壮的string to int转换函数

![string to int](https://d8it4huxumps7.cloudfront.net/uploads/images/64f6cb6175ee2_type_casting_type_conversion_in_c_6.jpg) # 1. 转换函数的重要性与应用场景 在软件开发中,数据类型的转换是一个不可或缺的过程。特别是在处理用户输入、数据交换和数据存储时,字符串到整数(string to int)的转换函数是应用最广泛的转换操作之一。这一转换过程不仅对数据准确性至关重要,而且在确保系统性能和处理异常输入方面扮演着关键角色。 转换函数不仅仅是一个简单的数据类型转换,它还
recommend-type

Win11离线安装net framework 3.5方法

在Windows 11上安装.NET Framework 3.5的离线方法并不直接支持,因为Microsoft从Windows 8.1开始就停止了对.NET 3.5的正式支持,并且从Windows 10 Fall Creators Update之后不再提供.net framework的离线安装包。然而,如果你确实需要这个版本,你可以尝试以下步骤,但这可能会有一些风险: 1. **下载安装文件**:虽然官方渠道不再提供,你可以在一些技术论坛或第三方网站找到旧版的.NET Framework ISO镜像或者安装文件,但请注意这可能不是微软官方发布的,可能存在兼容性和安全性问题。 2. **创建
recommend-type

制作与调试:声控开关电路详解

"该资源是一份关于声控开关制作的教学资料,旨在教授读者如何制作和调试声控开关,同时涵盖了半导体三极管的基础知识,包括其工作原理、类型、测量方法和在电路中的应用。" 声控开关是一种利用声音信号来控制电路通断的装置,常用于节能照明系统。在制作声控开关的过程中,核心元件是三极管,因为三极管在电路中起到放大和开关的作用。 首先,我们需要理解三极管的基本概念。三极管是电子电路中的关键器件,分为两种主要类型:NPN型和PNP型。它们由两个PN结构成,分别是基极(b)、集电极(c)和发射极(e)。电流从发射极流向集电极,而基极控制这个电流。NPN型三极管中,电流从基极到发射极是正向的,反之对于PNP型。 在选择和测试三极管时,要关注其参数,如电流放大系数β,它决定了三极管放大电流的能力。例如,90××系列的三极管,如9013、9012、9014和9018,分别对应不同特性的NPN型和PNP型三极管。此外,还有不同封装形式,如塑料封装或金属封装,以及不同功能的标识,如开关管、低频小功率管等。 在声光控开关电路中,声控部分通常涉及麦克风或其他声音传感器,当接收到特定音量或频率的声音时,会触发信号。这个信号通过三极管进行放大,进而控制可控硅或场效应管,使电路闭合,从而开启负载(如照明设备)。照明时间控制在1分钟内,这可能涉及到延时电路的设计,如使用定时器芯片。 在实际操作中,需要用到的工具包括示波器来测量三极管的特性曲线,确保其工作在正确的区域。电路安装和调试则要求对电路原理有深入的理解,包括放大电路的分析和元件的正确连接。 制作声控开关不仅是学习电子技术的一种实践方式,也是理解半导体器件工作原理的良好途径。通过这样的项目,不仅可以提升动手能力,还能增强对基础电子学理论的理解。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【性能测试与优化】:string to int转换的基准测试分析

# 1. 性能测试与优化概述 ## 1.1 性能测试与优化的重要性 在IT行业,随着用户需求的不断增长和技术的快速发展,系统的性能成为衡量一个产品成功与否的关键指标之一。性能测试是一种评估软件系统性能的方法,其目的在于通过合理的测试手段发现系统性能瓶颈,并为优化提供依据。优化,则是在性能测试的基础上,通过各种手段提升系统性能,满足业务需求。 ## 1.2 性能测试的目的与方法 性能测试的目的是为了验证系统能够满足性能需求,而不是简单地找出系统存在的问题。常见的性能测试方法包括负载测试、压力测试、稳定性测试和容量测试等。通过这些测试,我们可以了解到系统在特定条件下的行为表现,如响应时间、
recommend-type

shapely库求交点

Shapely 是一个用于处理地理空间几何形状的 Python 库,它支持多种几何类型如点、线、面以及它们之间的操作,包括求交点。如果你有两个几何对象(例如,线段或多边形),你可以使用 Shapely 的 `intersection` 函数计算它们的交集部分。这个函数会返回一个新的几何对象,表示两者相交的部分。 ```python from shapely.geometry import Point, LineString, Polygon # 创建两个几何对象 line1 = LineString([(0, 0), (1, 1)]) polygon = Polygon([(0, 0),