Resnet18 PyTorch复现代码
时间: 2024-05-13 07:19:36 浏览: 139
以下是一个简单的Resnet18的PyTorch复现代码,包括了网络结构的定义和训练部分的代码。代码中使用了CIFAR10数据集作为示例数据集,可以根据自己的需求更改数据集。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 定义ResNet基本块类
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2
相关问题
resnet18代码复现pytorch
### 回答1:
可以使用PyTorch自带的torchvision.models模块中的resnet18模型进行复现。
示例代码:
```
import torch
from torchvision import models
resnet18 = models.resnet18(pretrained=True)
# 打印模型结构
print(resnet18)
```
如果需要训练resnet18,可以使用如下代码:
```
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet18.parameters(), lr=0.001, momentum=0.9)
# 训练过程
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = resnet18(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
print('Epoch %d loss: %.3f' %(epoch + 1, running_loss / (i+1)))
print('Finished Training')
```
注意: 上面代码块中的trainloader是训练数据的读取方式。
### 回答2:
ResNet是一种非常流行的深度神经网络模型,它的结构深层,难于训练,容易发生梯度消失的问题。为了解决这个问题,ResNet在模型中引入了跨层连接(Shortcut Connection),让信息可以直接从前一层通过跨层连接到达后续层,从而避免了梯度消失的问题,使得训练更加容易。ResNet18是ResNet系列网络模型中的一种,它比较轻量级,适合在计算资源有限的情况下使用,今天我们来讲一下如何在PyTorch中复现ResNet18的代码。
1. 导入必要的库
在进行代码复现之前,我们需要先导入必要的库,包括PyTorch库、torchvision库和numpy库。
```python
import torch
import torchvision.models as models
import torchvision.transforms as transforms
import numpy as np
```
2. 定义模型结构
在复现ResNet18的代码之前,我们需要先了解一下ResNet18的结构。ResNet18包括18个卷积层和一个全连接层,其中18个卷积层被分为4个阶段(每个阶段包含若干个卷积层),每个阶段还包含一个Downsampling操作,用于降低特征图的空间大小,其中第一个阶段不需要Downsampling操作。
在PyTorch中可以使用torchvision.models.resnet18()函数来创建ResNet18模型,该函数会自动下载预训练模型参数,或者设置pretrained=False来创建一个没有预训练模型参数的模型。我们在这里使用没有预训练模型参数的模型。为了让输出层的大小符合我们的需求,我们需要修改全连接层的输入特征数量和输出特征数量。
```python
#定义resnet18模型结构
def resnet18(num_classes):
model = models.resnet18(pretrained=False)
num_ftrs = model.fc.in_features
model.fc = torch.nn.Linear(num_ftrs, num_classes)
return model
```
3. 数据预处理和模型训练
在进行训练之前,我们需要对数据进行预处理,这里我们使用PyTorch中提供的transforms库对数据进行预处理。另外,我们还需要定义损失函数和优化器。
```python
#进行数据预处理
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
#定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
接下来,我们可以使用PyTorch中的Dataset和Dataloader来加载数据集,进行模型训练。在训练过程中,我们需要从数据集中取出一个batch的数据,经过模型计算和损失函数计算得到损失值,并对模型参数进行优化。每经过若干次迭代,我们可以对模型在验证集上的表现进行评估,从而得到模型的准确率。
```python
#加载数据集
data_dir = 'data/'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),data_transforms[x]) for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,shuffle=True, num_workers=4) for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
#模型训练
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
```
4. 结论
通过以上步骤,我们成功地用PyTorch中的库复现了ResNet18的代码,并使用ImageNet数据集对其进行了训练和验证。ResNet18是一个比较轻量级的深度神经网络模型,适合在计算资源有限的情况下使用,与其他类型的模型相比,在处理图像分类问题时具有更好的性能。通过不断的优化和调整,我们可以获得更好的训练结果,提高模型的准确率。
### 回答3:
ResNet(Residual Network)是2015年ImageNet图像识别挑战中的冠军,也是深度残差网络(Deep Residual Network)的基础。ResNet模型利用残差块(Residual block)实现深度网络,使用跨层的连接(Shortcut connection)优化网络拟合能力,减少梯度消失的问题,可有效地提高网络表现。
在本文中,我们将回答如何使用pytorch编写并复现ResNet18模型的代码。
首先,我们需要安装好pytorch包,以及相关的torchvision包。然后,按照以下步骤进行:
1.导入相关模块
import torch
from torch import nn
from torch.nn import functional as F
2.定义残差块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
3.定义ResNet18网络结构
class ResNet18(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = nn.Sequential(
ResidualBlock(64, 64),
ResidualBlock(64, 64)
)
self.layer2 = nn.Sequential(
ResidualBlock(64, 128, stride=2),
ResidualBlock(128, 128)
)
self.layer3 = nn.Sequential(
ResidualBlock(128, 256, stride=2),
ResidualBlock(256, 256)
)
self.layer4 = nn.Sequential(
ResidualBlock(256, 512, stride=2),
ResidualBlock(512, 512)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.max_pool2d(out, kernel_size=3, stride=2, padding=1)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
4.添加数据集和损失函数的定义
model = ResNet18()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
5.开始训练模型
for epoch in range(10):
train_loss = 0.0
for i, (inputs, labels) in enumerate(trainloader, 0):
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, train_loss / 2000))
train_loss = 0.0
6.评估模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
7.保存模型
torch.save(model.state_dict(), 'resnet18.pth')
到此为止,我们已经完成了ResNet18模型的代码复现,并成功对其进行了训练和评估。如果您想要更好地理解这个过程,可以看看相关的学习资料和视频课程,这将会对您的研究和实践产生巨大帮助。
resnet50代码复现pytorch
引用中提到的Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization的复现采用了resnet50预训练网络,下面是一个简单的resnet50代码复现的步骤:
1.导入必要的库和模块:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
```
2.定义ResNet50模型:
```
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 1 * 1, num_classes)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * 4, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * 4),
)
layers = []
layers.append(Bottleneck(self.inplanes, planes, stride, downsample))
self.inplanes = planes * 4
for _ in range(1, blocks):
layers.append(Bottleneck(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
3.定义Bottleneck模块:
```
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
4.定义数据预处理:
```
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
5.加载数据集:
```
train_dataset = datasets.ImageFolder('path/to/train', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataset = datasets.ImageFolder('path/to/val', transform=transform)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
```
6.定义损失函数和优化器:
```
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
```
7.训练模型:
```
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
8.测试模型:
```
with torch.no_grad():
correct = 0
total = 0
for images, labels in val_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
```
阅读全文