用python设计一个OS进程与内存管理模拟程序,要求: (1)程序运行后提供一个交互界面或窗口,允许用户输入以下命令并可以滴对命令进行解释执行, creatproc:提交作业命令,要求用户提供作业估计运行时长和内存大小需求。该命令的解释执行过程为对该作业创建对应的进程,完成PCB建立、存储空间分配等工作。(既执行OS的创建进程原语) killproc 进程号:终止进程命令。该命令的解释执行过程为对进程进行撤销,回收存储空间和PCB。 iostrartproc 进程号:阻塞进程命令。该命令的解释执行过程为对处于运行状态的进程进行阻塞操作,进程状态转为阻塞状态。 iofinishproc 进程号:阻塞进程命令。该命令的解释执行过程为对处于阻塞状态的进程进行唤醒操作,进程状态转为就绪状态。 psproc:显示所有进程状态命令。该命令的解释执行过程为显示出所有进程的状态信息,主要包括进程id,进程状态,存储空间地址。 mem:显示内存空间使用情况信息。该命令的解释执行过程为显示内存空间的占用和空闲情况。

时间: 2024-04-06 17:30:47 浏览: 60
好的,我可以为你提供一个简单的Python程序,实现进程与内存管理模拟。 ```python class Process: def __init__(self, pid, time, size): self.pid = pid self.time = time self.size = size self.status = "ready" self.mem_start = None self.mem_end = None class Memory: def __init__(self, size): self.size = size self.free_mem = [{"start": 0, "end": size-1}] self.used_mem = [] def allocate(self, size): for i in range(len(self.free_mem)): if self.free_mem[i]["end"] - self.free_mem[i]["start"] + 1 >= size: mem_start = self.free_mem[i]["start"] mem_end = mem_start + size - 1 self.used_mem.append({"start": mem_start, "end": mem_end}) self.free_mem[i]["start"] = mem_end + 1 if self.free_mem[i]["start"] > self.free_mem[i]["end"]: self.free_mem.pop(i) return mem_start, mem_end return None, None def deallocate(self, mem_start): for i in range(len(self.used_mem)): if self.used_mem[i]["start"] == mem_start: mem_end = self.used_mem[i]["end"] self.free_mem.append({"start": mem_start, "end": mem_end}) self.used_mem.pop(i) class OS: def __init__(self, mem_size): self.processes = [] self.memory = Memory(mem_size) def create_process(self, time, size): pid = len(self.processes) + 1 process = Process(pid, time, size) process.mem_start, process.mem_end = self.memory.allocate(size) if process.mem_start is not None and process.mem_end is not None: self.processes.append(process) print("Process {} created".format(pid)) else: print("Memory allocation failed") def kill_process(self, pid): for process in self.processes: if process.pid == pid: self.memory.deallocate(process.mem_start) self.processes.remove(process) print("Process {} killed".format(pid)) break else: print("Process {} not found".format(pid)) def block_process(self, pid): for process in self.processes: if process.pid == pid and process.status == "running": process.status = "blocked" print("Process {} blocked".format(pid)) break else: print("Process {} not found or not running".format(pid)) def unblock_process(self, pid): for process in self.processes: if process.pid == pid and process.status == "blocked": process.status = "ready" print("Process {} unblocked".format(pid)) break else: print("Process {} not found or not blocked".format(pid)) def show_processes(self): for process in self.processes: print("Process ID: {}\nStatus: {}\nMemory start: {}\nMemory end: {}\n".format(process.pid, process.status, process.mem_start, process.mem_end)) def show_memory(self): free_mem = self.memory.free_mem used_mem = self.memory.used_mem print("Free memory blocks:") for block in free_mem: print("Start: {}, End: {}".format(block["start"], block["end"])) print("Used memory blocks:") for block in used_mem: print("Start: {}, End: {}".format(block["start"], block["end"])) os = OS(100) while True: command = input("Enter a command: ") if command.startswith("creatproc"): time, size = command.split()[1:] os.create_process(int(time), int(size)) elif command.startswith("killproc"): pid = int(command.split()[1]) os.kill_process(pid) elif command.startswith("iostrartproc"): pid = int(command.split()[1]) os.block_process(pid) elif command.startswith("iofinishproc"): pid = int(command.split()[1]) os.unblock_process(pid) elif command == "psproc": os.show_processes() elif command == "mem": os.show_memory() else: print("Invalid command") ``` 上述程序中,首先定义了一个 `Process` 类来存储进程的信息,包括进程ID、运行时间、内存占用大小、状态以及所占用的存储空间的起始地址和结束地址。接着定义了一个 `Memory` 类来管理内存的分配和回收,其中 `allocate` 方法用于分配内存空间,`deallocate` 方法用于回收内存空间。最后定义了一个 `OS` 类来实现各种命令的解释执行,包括创建进程、撤销进程、阻塞进程、唤醒进程、显示进程状态以及显示内存空间使用情况。在主程序中,使用一个 `while` 循环来不断等待用户输入命令,并根据命令调用相应的方法进行处理。 注意:上述程序只是一个简单的示例,还有很多细节问题需要考虑和完善,比如进程的调度策略、内存空间的分配算法等等。
阅读全文

相关推荐

最新推荐

recommend-type

Python实现保证只能运行一个脚本实例

在Python编程中,有时我们需要确保一个脚本在同一时间只能有一个实例在运行,这通常是为了避免资源冲突、数据不一致或其他潜在问题。为了实现这个功能,我们可以利用进程间通信(IPC)的方法,例如监听一个特定的...
recommend-type

用python+pyqt5手工编写一个含交互界面的简易的词法分析器

综上所述,这个项目展示了如何利用Python和PyQt5结合编译原理,构建一个简易的词法分析器,并提供了一个交互式的用户界面。开发者不仅需要理解Python编程和GUI设计,还需要掌握编译原理中词法分析的相关概念。通过...
recommend-type

基于Python的一个自动录入表格的小程序

1. **信息收集**:利用`os`库遍历指定的QQ接收文件夹(如`D://qq//qq文档//qq//FileRecv//`),找出所有TXT文件,并使用`shutil`库将它们复制到一个统一的处理目录,同时删除原始QQ接收目录中的文件,以保持整洁。...
recommend-type

Python PyQt5运行程序把输出信息展示到GUI图形界面上

在Python编程中,使用PyQt5构建GUI图形用户界面时,有时我们需要将程序运行过程中的输出信息展示在界面上,而不是传统的控制台或命令行窗口。这个问题在进行毕业设计或其他项目开发时可能会遇到,特别是在结合如爬虫...
recommend-type

一个简单的python程序实例(通讯录)

这个Python程序实例是一个简单的通讯录管理系统,用于存储和管理联系人的电子邮件地址。下面将详细解释程序中的关键知识点: 1. **文件操作**:程序通过`file()`函数打开和关闭文件,进行读写操作。`file(friendab,...
recommend-type

Droste:探索Scala中的递归方案

标题和描述中都提到的“droste”和“递归方案”暗示了这个话题与递归函数式编程相关。此外,“droste”似乎是指一种递归模式或方案,而“迭代是人类,递归是神圣的”则是一种比喻,强调递归在编程中的优雅和力量。为了更好地理解这个概念,我们需要分几个部分来阐述。 首先,要了解什么是递归。在计算机科学中,递归是一种常见的编程技术,它允许函数调用自身来解决问题。递归方法可以将复杂问题分解成更小、更易于管理的子问题。在递归函数中,通常都会有一个基本情况(base case),用来结束递归调用的无限循环,以及递归情况(recursive case),它会以缩小问题规模的方式调用自身。 递归的概念可以追溯到数学中的递归定义,比如自然数的定义就是一个经典的例子:0是自然数,任何自然数n的后继者(记为n+1)也是自然数。在编程中,递归被广泛应用于数据结构(如二叉树遍历),算法(如快速排序、归并排序),以及函数式编程语言(如Haskell、Scala)中,它提供了强大的抽象能力。 从标签来看,“scala”,“functional-programming”,和“recursion-schemes”表明了所讨论的焦点是在Scala语言下函数式编程与递归方案。Scala是一种多范式的编程语言,结合了面向对象和函数式编程的特点,非常适合实现递归方案。递归方案(recursion schemes)是函数式编程中的一个高级概念,它提供了一种通用的方法来处理递归数据结构。 递归方案主要分为两大类:原始递归方案(原始-迭代者)和高级递归方案(例如,折叠(fold)/展开(unfold)、catamorphism/anamorphism)。 1. 原始递归方案(primitive recursion schemes): - 原始递归方案是一种模式,用于定义和操作递归数据结构(如列表、树、图等)。在原始递归方案中,数据结构通常用代数数据类型来表示,并配合以不变性原则(principle of least fixed point)。 - 在Scala中,原始递归方案通常通过定义递归类型类(如F-Algebras)以及递归函数(如foldLeft、foldRight)来实现。 2. 高级递归方案: - 高级递归方案进一步抽象了递归操作,如折叠和展开,它们是处理递归数据结构的强大工具。折叠允许我们以一种“下降”方式来遍历和转换递归数据结构,而展开则是“上升”方式。 - Catamorphism是将数据结构中的值“聚合成”单一值的过程,它是一种折叠操作,而anamorphism则是从单一值生成数据结构的过程,可以看作是展开操作。 - 在Scala中,高级递归方案通常与类型类(如Functor、Foldable、Traverse)和高阶函数紧密相关。 再回到“droste”这个词,它很可能是一个递归方案的实现或者是该领域内的一个项目名。根据文件名称“droste-master”,可以推测这可能是一个仓库,其中包含了与递归方案相关的Scala代码库或项目。 总的来说,递归方案和“droste”项目都属于高级函数式编程实践,它们为处理复杂的递归数据结构提供了一种系统化和模块化的手段。在使用Scala这类函数式语言时,递归方案能帮助开发者写出更简洁、可维护的代码,同时能够更安全、有效地处理递归结构的深层嵌套数据。
recommend-type

Simulink DLL性能优化:实时系统中的高级应用技巧

# 摘要 本文全面探讨了Simulink DLL性能优化的理论与实践,旨在提高实时系统中DLL的性能表现。首先概述了性能优化的重要性,并讨论了实时系统对DLL性能的具体要求以及性能评估的方法。随后,详细介绍了优化策略,包括理论模型和系统层面的优化。接着,文章深入到编码实践技巧,讲解了高效代码编写原则、DLL接口优化和
recommend-type

rust语言将文本内容转换为音频

Rust是一种系统级编程语言,它以其内存安全性和高性能而闻名。虽然Rust本身并不是专门用于音频处理的语言,但它可以与其他库配合来实现文本转音频的功能。通常这种任务需要借助外部库,比如`ncurses-rs`(控制台界面库)结合`wave`、`audio-kit-rs`等音频处理库,或者使用更专业的第三方库如`flac`、`opus`等进行编码。 以下是使用Rust进行文本转音频的一个简化示例流程: 1. 安装必要的音频处理库:首先确保已经安装了`cargo install flac wave`等音频编码库。 2. 导入库并创建音频上下文:导入`flac`库,创建一个可以写入FLAC音频
recommend-type

安卓蓝牙技术实现照明远程控制

标题《基于安卓蓝牙的远程控制照明系统》指向了一项技术实现,即利用安卓平台上的蓝牙通信能力来操控照明系统。这一技术实现强调了几个关键点:移动平台开发、蓝牙通信协议以及照明控制的智能化。下面将从这三个方面详细阐述相关知识点。 **安卓平台开发** 安卓(Android)是Google开发的一种基于Linux内核的开源操作系统,广泛用于智能手机和平板电脑等移动设备上。安卓平台的开发涉及多个层面,从底层的Linux内核驱动到用户界面的应用程序开发,都需要安卓开发者熟练掌握。 1. **安卓应用框架**:安卓应用的开发基于一套完整的API框架,包含多个模块,如Activity(界面组件)、Service(后台服务)、Content Provider(数据共享)和Broadcast Receiver(广播接收器)等。在远程控制照明系统中,这些组件会共同工作来实现用户界面、蓝牙通信和状态更新等功能。 2. **安卓生命周期**:安卓应用有着严格的生命周期管理,从创建到销毁的每个状态都需要妥善管理,确保应用的稳定运行和资源的有效利用。 3. **权限管理**:由于安卓应用对硬件的控制需要相应的权限,开发此类远程控制照明系统时,开发者必须在应用中声明蓝牙通信相关的权限。 **蓝牙通信协议** 蓝牙技术是一种短距离无线通信技术,被广泛应用于个人电子设备的连接。在安卓平台上开发蓝牙应用,需要了解和使用安卓提供的蓝牙API。 1. **蓝牙API**:安卓系统通过蓝牙API提供了与蓝牙硬件交互的能力,开发者可以利用这些API进行设备发现、配对、连接以及数据传输。 2. **蓝牙协议栈**:蓝牙协议栈定义了蓝牙设备如何进行通信,安卓系统内建了相应的协议栈来处理蓝牙数据包的发送和接收。 3. **蓝牙配对与连接**:在实现远程控制照明系统时,必须处理蓝牙设备间的配对和连接过程,这包括了PIN码验证、安全认证等环节,以确保通信的安全性。 **照明系统的智能化** 照明系统的智能化是指照明设备可以被远程控制,并且可以与智能设备进行交互。在本项目中,照明系统的智能化体现在能够响应安卓设备发出的控制指令。 1. **远程控制协议**:照明系统需要支持一种远程控制协议,安卓应用通过蓝牙通信发送特定指令至照明系统。这些指令可能包括开/关灯、调整亮度、改变颜色等。 2. **硬件接口**:照明系统中的硬件部分需要具备接收和处理蓝牙信号的能力,这通常通过特定的蓝牙模块和微控制器来实现。 3. **网络通信**:如果照明系统不直接与安卓设备通信,还可以通过Wi-Fi或其它无线技术进行间接通信。此时,照明系统内部需要有相应的网络模块和协议栈。 **相关技术实现示例** 在具体技术实现方面,假设我们正在开发一个名为"LightControl"的安卓应用,该应用能够让用户通过蓝牙与家中的智能照明灯泡进行交互。以下是几个关键步骤: 1. **用户界面设计**:设计简洁直观的用户界面,提供必要的按钮和指示灯,用于显示当前设备状态和发送控制指令。 2. **蓝牙操作实现**:编写代码实现搜索蓝牙设备、配对、建立连接及数据传输的功能。安卓应用需扫描周围蓝牙设备,待用户选择相应照明灯泡后,进行配对和连接,之后便可以发送控制指令。 3. **指令解码与执行**:照明设备端需要有对应的程序来监听蓝牙信号,当接收到特定格式的指令时,执行相应的控制逻辑,如开启/关闭电源、调节亮度等。 4. **安全性考虑**:确保通信过程中的数据加密和设备认证,防止未授权的访问或控制。 在技术细节上,开发者需要对安卓开发环境、蓝牙通信流程有深入的了解,并且在硬件端具备相应的编程能力,以保证应用与硬件的有效对接和通信。 通过上述内容的详细阐述,可以看出安卓蓝牙远程控制照明系统的实现是建立在移动平台开发、蓝牙通信协议和智能化硬件控制等多个方面的综合技术运用。开发者需要掌握的不仅仅是编程知识,还应包括对蓝牙技术的深入理解和对移动设备通信机制的全面认识。
recommend-type

【Simulink DLL集成】:零基础快速上手,构建高效模型策略

# 摘要 本文综合介绍了Simulink模型与DLL(动态链接库)的集成过程,详细阐述了从模型构建基础到DLL集成的高级策略。首先概述了Simulink模型构建的基本概念、参数化和仿真调试方法。接着,深入探讨了DLL的基础知识、在Simulink中的集成