红外与可见光图像融合数据集
时间: 2023-07-30 15:08:41 浏览: 545
您好!对于红外与可见光图像融合的数据集,这里有一些常用的数据集供您参考:
1. FLIR数据集:由FLIR Systems提供的红外图像数据集,包含了多种场景下的红外图像和相应的可见光图像,可用于研究红外与可见光图像融合算法。
2. KAIST数据集:由韩国高级科学技术研究院提供的红外与可见光图像融合数据集,包含了城市街景中的红外图像和相应的可见光图像,适用于研究目标检测、目标跟踪等任务。
3. IVRG数据集:由比利时根特大学Image and Video Research Group提供的红外与可见光图像融合数据集,包含了不同场景下的红外图像和相应的可见光图像,适用于研究多模态图像融合算法。
4. TNO数据集:由荷兰国家组织TNO提供的红外与可见光图像融合数据集,包含了军事、安防等场景下的红外图像和相应的可见光图像,可用于研究目标检测、人脸识别等任务。
这些数据集都可以通过相应的官方网站或联系提供者获取。同时,还有一些学术论文中提到的数据集也可以作为参考,例如基于红外与可见光图像融合的目标检测数据集等。希望对您有所帮助!如有更多问题,请随时提问。
相关问题
TNO红外与可见光图像融合数据集
TNO红外与可见光图像融合数据集是TNO公司发布的一个用于红外与可见光图像融合研究的数据集。该数据集包含了红外图像和对应的可见光图像、以及它们的融合图像。这些图像涵盖了不同的场景,包括人造和自然场景。该数据集可以用于研究红外与可见光图像的融合算法,例如基于变换的方法、基于深度学习的方法等。此外,该数据集还包含了详细的注释信息,包括融合图像的质量评估、误差分析等,可以帮助研究者更好地理解和分析各种融合算法的性能。
使用coco数据集,pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合的全过程代码
很高兴能为您提供帮助!下面是一个基于多尺度自编码网络的红外与可见光图像融合的模型的实现代码,使用了COCO数据集和PyTorch框架。
首先,我们需要导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import numpy as np
import cv2
import os
from PIL import Image
```
接下来,我们定义数据集类,这里使用了COCO数据集。我们需要从文件中读取图像和对应的标签,同时进行一些预处理操作,如裁剪、缩放等。
```python
class COCODataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.images = []
self.labels = []
with open(os.path.join(root_dir, 'train.txt'), 'r') as f:
lines = f.readlines()
for line in lines:
img_name = line.strip()
img_path = os.path.join(root_dir, 'images', img_name)
label_path = os.path.join(root_dir, 'labels', img_name)
self.images.append(img_path)
self.labels.append(label_path)
def __getitem__(self, idx):
img_path = self.images[idx]
label_path = self.labels[idx]
img = Image.open(img_path).convert('RGB')
label = Image.open(label_path).convert('L')
if self.transform:
img = self.transform(img)
label = self.transform(label)
return img, label
def __len__(self):
return len(self.images)
```
接下来,我们定义模型类,这里使用了多尺度自编码网络。我们首先定义自编码器模块,包括编码器和解码器。然后我们定义多尺度自编码器网络,包括多个自编码器模块和一个整合模块。
```python
class AutoEncoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(),
nn.Conv2d(1024, out_channels, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(out_channels, 1024, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(1024),
nn.ReLU(),
nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.ReLU(),
nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.ConvTranspose2d(64, in_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channels),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class MultiScaleAutoEncoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(MultiScaleAutoEncoder, self).__init__()
self.autoencoder1 = AutoEncoder(in_channels, out_channels)
self.autoencoder2 = AutoEncoder(in_channels, out_channels)
self.autoencoder3 = AutoEncoder(in_channels, out_channels)
self.autoencoder4 = AutoEncoder(in_channels, out_channels)
self.integrate = nn.Sequential(
nn.Conv2d(4 * out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU()
)
def forward(self, x):
x1 = self.autoencoder1(x)
x2 = F.interpolate(x1, scale_factor=0.5, mode='bilinear', align_corners=True)
x2 = self.autoencoder2(x2)
x3 = F.interpolate(x2, scale_factor=0.5, mode='bilinear', align_corners=True)
x3 = self.autoencoder3(x3)
x4 = F.interpolate(x3, scale_factor=0.5, mode='bilinear', align_corners=True)
x4 = self.autoencoder4(x4)
x2 = F.interpolate(x2, scale_factor=2, mode='bilinear', align_corners=True)
x3 = F.interpolate(x3, scale_factor=4, mode='bilinear', align_corners=True)
x4 = F.interpolate(x4, scale_factor=8, mode='bilinear', align_corners=True)
x = torch.cat([x1, x2, x3, x4], dim=1)
x = self.integrate(x)
return x
```
接下来,我们定义训练函数。我们首先定义一些超参数,然后加载数据集并进行数据增强操作。接着定义模型和优化器,然后进行训练。在每个epoch结束时,我们计算并输出训练集和验证集的损失值。
```python
def train(num_epochs, batch_size, learning_rate, train_root_dir, val_root_dir, model_save_path):
# define hyperparameters
in_channels = 3
out_channels = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load dataset and do data augmentation
train_transforms = transforms.Compose([
transforms.RandomCrop(256),
transforms.ToTensor()
])
train_dataset = COCODataset(train_root_dir, transform=train_transforms)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_transforms = transforms.Compose([
transforms.CenterCrop(256),
transforms.ToTensor()
])
val_dataset = COCODataset(val_root_dir, transform=val_transforms)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# define model and optimizer
model = MultiScaleAutoEncoder(in_channels, out_channels).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# train the model
for epoch in range(num_epochs):
total_loss = 0.0
# train the model on training set
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = F.mse_loss(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# evaluate the model on validation set
model.eval()
with torch.no_grad():
val_loss = 0.0
for i, (images, labels) in enumerate(val_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = F.mse_loss(outputs, labels)
val_loss += loss.item()
print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}'.format(epoch+1, num_epochs, total_loss/len(train_loader), val_loss/len(val_loader)))
# save the model
torch.save(model.state_dict(), model_save_path)
```
最后,我们可以调用训练函数来训练我们的模型,并保存训练好的模型。
```python
train(10, 16, 0.001, 'train', 'val', 'model.pth')
```
阅读全文