红外与可见光图像融合数据集

时间: 2023-07-30 15:08:41 浏览: 545
您好!对于红外与可见光图像融合的数据集,这里有一些常用的数据集供您参考: 1. FLIR数据集:由FLIR Systems提供的红外图像数据集,包含了多种场景下的红外图像和相应的可见光图像,可用于研究红外与可见光图像融合算法。 2. KAIST数据集:由韩国高级科学技术研究院提供的红外与可见光图像融合数据集,包含了城市街景中的红外图像和相应的可见光图像,适用于研究目标检测、目标跟踪等任务。 3. IVRG数据集:由比利时根特大学Image and Video Research Group提供的红外与可见光图像融合数据集,包含了不同场景下的红外图像和相应的可见光图像,适用于研究多模态图像融合算法。 4. TNO数据集:由荷兰国家组织TNO提供的红外与可见光图像融合数据集,包含了军事、安防等场景下的红外图像和相应的可见光图像,可用于研究目标检测、人脸识别等任务。 这些数据集都可以通过相应的官方网站或联系提供者获取。同时,还有一些学术论文中提到的数据集也可以作为参考,例如基于红外与可见光图像融合的目标检测数据集等。希望对您有所帮助!如有更多问题,请随时提问。
相关问题

TNO红外与可见光图像融合数据集

TNO红外与可见光图像融合数据集是TNO公司发布的一个用于红外与可见光图像融合研究的数据集。该数据集包含了红外图像和对应的可见光图像、以及它们的融合图像。这些图像涵盖了不同的场景,包括人造和自然场景。该数据集可以用于研究红外与可见光图像的融合算法,例如基于变换的方法、基于深度学习的方法等。此外,该数据集还包含了详细的注释信息,包括融合图像的质量评估、误差分析等,可以帮助研究者更好地理解和分析各种融合算法的性能。

使用coco数据集,pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合的全过程代码

很高兴能为您提供帮助!下面是一个基于多尺度自编码网络的红外与可见光图像融合的模型的实现代码,使用了COCO数据集和PyTorch框架。 首先,我们需要导入必要的库和模块: ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader import torchvision.transforms as transforms import numpy as np import cv2 import os from PIL import Image ``` 接下来,我们定义数据集类,这里使用了COCO数据集。我们需要从文件中读取图像和对应的标签,同时进行一些预处理操作,如裁剪、缩放等。 ```python class COCODataset(Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform self.images = [] self.labels = [] with open(os.path.join(root_dir, 'train.txt'), 'r') as f: lines = f.readlines() for line in lines: img_name = line.strip() img_path = os.path.join(root_dir, 'images', img_name) label_path = os.path.join(root_dir, 'labels', img_name) self.images.append(img_path) self.labels.append(label_path) def __getitem__(self, idx): img_path = self.images[idx] label_path = self.labels[idx] img = Image.open(img_path).convert('RGB') label = Image.open(label_path).convert('L') if self.transform: img = self.transform(img) label = self.transform(label) return img, label def __len__(self): return len(self.images) ``` 接下来,我们定义模型类,这里使用了多尺度自编码网络。我们首先定义自编码器模块,包括编码器和解码器。然后我们定义多尺度自编码器网络,包括多个自编码器模块和一个整合模块。 ```python class AutoEncoder(nn.Module): def __init__(self, in_channels, out_channels): super(AutoEncoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.Conv2d(1024, out_channels, kernel_size=3, stride=2, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) self.decoder = nn.Sequential( nn.ConvTranspose2d(out_channels, 1024, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(1024), nn.ReLU(), nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(256), nn.ReLU(), nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.ConvTranspose2d(64, in_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(in_channels), nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x class MultiScaleAutoEncoder(nn.Module): def __init__(self, in_channels, out_channels): super(MultiScaleAutoEncoder, self).__init__() self.autoencoder1 = AutoEncoder(in_channels, out_channels) self.autoencoder2 = AutoEncoder(in_channels, out_channels) self.autoencoder3 = AutoEncoder(in_channels, out_channels) self.autoencoder4 = AutoEncoder(in_channels, out_channels) self.integrate = nn.Sequential( nn.Conv2d(4 * out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU() ) def forward(self, x): x1 = self.autoencoder1(x) x2 = F.interpolate(x1, scale_factor=0.5, mode='bilinear', align_corners=True) x2 = self.autoencoder2(x2) x3 = F.interpolate(x2, scale_factor=0.5, mode='bilinear', align_corners=True) x3 = self.autoencoder3(x3) x4 = F.interpolate(x3, scale_factor=0.5, mode='bilinear', align_corners=True) x4 = self.autoencoder4(x4) x2 = F.interpolate(x2, scale_factor=2, mode='bilinear', align_corners=True) x3 = F.interpolate(x3, scale_factor=4, mode='bilinear', align_corners=True) x4 = F.interpolate(x4, scale_factor=8, mode='bilinear', align_corners=True) x = torch.cat([x1, x2, x3, x4], dim=1) x = self.integrate(x) return x ``` 接下来,我们定义训练函数。我们首先定义一些超参数,然后加载数据集并进行数据增强操作。接着定义模型和优化器,然后进行训练。在每个epoch结束时,我们计算并输出训练集和验证集的损失值。 ```python def train(num_epochs, batch_size, learning_rate, train_root_dir, val_root_dir, model_save_path): # define hyperparameters in_channels = 3 out_channels = 64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # load dataset and do data augmentation train_transforms = transforms.Compose([ transforms.RandomCrop(256), transforms.ToTensor() ]) train_dataset = COCODataset(train_root_dir, transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_transforms = transforms.Compose([ transforms.CenterCrop(256), transforms.ToTensor() ]) val_dataset = COCODataset(val_root_dir, transform=val_transforms) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) # define model and optimizer model = MultiScaleAutoEncoder(in_channels, out_channels).to(device) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # train the model for epoch in range(num_epochs): total_loss = 0.0 # train the model on training set model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = F.mse_loss(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # evaluate the model on validation set model.eval() with torch.no_grad(): val_loss = 0.0 for i, (images, labels) in enumerate(val_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) loss = F.mse_loss(outputs, labels) val_loss += loss.item() print('Epoch [{}/{}], Train Loss: {:.4f}, Val Loss: {:.4f}'.format(epoch+1, num_epochs, total_loss/len(train_loader), val_loss/len(val_loader))) # save the model torch.save(model.state_dict(), model_save_path) ``` 最后,我们可以调用训练函数来训练我们的模型,并保存训练好的模型。 ```python train(10, 16, 0.001, 'train', 'val', 'model.pth') ```
阅读全文

相关推荐

zip

最新推荐

recommend-type

ssm-vue-校园代购服务订单管理系统-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在IDEA中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。前台采用支持 HTML5 的 VUE 框架。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习 VUE 框架构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

【毕业设计】matlab植物虫害检测的系统源码.zip

【毕业设计】matlab植物虫害检测的系统源码.zip
recommend-type

ssm-jsp-大学生兼职平台-源码工程-32页从零开始全套图文详解-34页参考论文-27页参考答辩-全套开发环境工具、文档模板、电子教程、视频教学资源.zip

资源说明: 1:csdn平台资源详情页的文档预览若发现'异常',属平台多文档混合解析和叠加展示风格,请放心使用。 2:32页图文详解文档(从零开始项目全套环境工具安装搭建调试运行部署,保姆级图文详解)。 3:34页范例参考毕业论文,万字长文,word文档,支持二次编辑。 4:27页范例参考答辩ppt,pptx格式,支持二次编辑。 5:工具环境、ppt参考模板、相关教程资源分享。 6:资源项目源码均已通过严格测试验证,保证能够正常运行,本项目仅用作交流学习参考,请切勿用于商业用途。 7:项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通。 内容概要: 本系统基于 B/S 网络结构,在 IDEA 中开发。服务端用 Java 并借 ssm 框架(Spring+SpringMVC+MyBatis)搭建后台。用 MySQL 存储数据,可靠性强。 能学到什么: 学会用ssm搭建后台,提升效率、专注业务。学习使用jsp、html构建交互界面、前后端数据交互、MySQL管理数据、从零开始环境搭建、调试、运行、打包、部署流程。
recommend-type

导光板搬运设备(sw20看编辑+工程图+BOM)全套技术资料100%好用.zip

导光板搬运设备(sw20看编辑+工程图+BOM)全套技术资料100%好用.zip
recommend-type

实验室设备管理系统(Laboratory-Equipment-Management-System).zip

管理系统是一种通过计算机技术实现的用于组织、监控和控制各种活动的软件系统。这些系统通常被设计用来提高效率、减少错误、加强安全性,同时提供数据和信息支持。以下是一些常见类型的管理系统: 学校管理系统: 用于学校或教育机构的学生信息、教职员工信息、课程管理、成绩记录、考勤管理等。学校管理系统帮助提高学校的组织效率和信息管理水平。 人力资源管理系统(HRM): 用于处理组织内的人事信息,包括员工招聘、培训记录、薪资管理、绩效评估等。HRM系统有助于企业更有效地管理人力资源,提高员工的工作效率和满意度。 库存管理系统: 用于追踪和管理商品或原材料的库存。这种系统可以帮助企业避免库存过剩或不足的问题,提高供应链的效率。 客户关系管理系统(CRM): 用于管理与客户之间的关系,包括客户信息、沟通记录、销售机会跟踪等。CRM系统有助于企业更好地理解客户需求,提高客户满意度和保留率。 医院管理系统: 用于管理医院或医疗机构的患者信息、医生排班、药品库存等。这种系统可以提高医疗服务的质量和效率。 财务管理。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

降低成本的oracle11g内网安装依赖-pdksh-5.2.14-1.i386.rpm下载

资源摘要信息: "Oracle数据库系统作为广泛使用的商业数据库管理系统,其安装过程较为复杂,涉及到多个预安装依赖包的配置。本资源提供了Oracle 11g数据库内网安装所必需的预安装依赖包——pdksh-5.2.14-1.i386.rpm,这是一种基于UNIX系统使用的命令行解释器,即Public Domain Korn Shell。对于Oracle数据库的安装,pdksh是必须的预安装组件,其作用是为Oracle安装脚本提供命令解释的环境。" Oracle数据库的安装与配置是一个复杂的过程,需要诸多组件的协同工作。在Linux环境下,尤其在内网环境中安装Oracle数据库时,可能会因为缺少某些关键的依赖包而导致安装失败。pdksh是一个自由软件版本的Korn Shell,它基于Bourne Shell,同时引入了C Shell的一些特性。由于Oracle数据库对于Shell脚本的兼容性和可靠性有较高要求,因此pdksh便成为了Oracle安装过程中不可或缺的一部分。 在进行Oracle 11g的安装时,如果没有安装pdksh,安装程序可能会报错或者无法继续。因此,确保pdksh已经被正确安装在系统上是安装Oracle的第一步。根据描述,这个特定的pdksh版本——5.2.14,是一个32位(i386架构)的rpm包,适用于基于Red Hat的Linux发行版,如CentOS、RHEL等。 运维人员在进行Oracle数据库安装时,通常需要下载并安装多个依赖包。在描述中提到,下载此依赖包的价格已被“打下来”,暗示了市场上其他来源可能提供的费用较高,这可能是因为Oracle数据库的软件和依赖包通常价格不菲。为了降低IT成本,本文档提供了实际可行的、经过测试确认可用的资源下载途径。 需要注意的是,仅仅拥有pdksh-5.2.14-1.i386.rpm文件是不够的,还要确保系统中已经安装了正确的依赖包管理工具,并且系统的软件仓库配置正确,以便于安装rpm包。在安装rpm包时,通常需要管理员权限,因此可能需要使用sudo或以root用户身份来执行安装命令。 除了pdksh之外,Oracle 11g安装可能还需要其他依赖,如系统库文件、开发工具等。如果有其他依赖需求,可以参考描述中提供的信息,点击相关者的头像,访问其提供的其他资源列表,以找到所需的相关依赖包。 总结来说,pdksh-5.2.14-1.i386.rpm包是Oracle 11g数据库内网安装过程中的关键依赖之一,它的存在对于运行Oracle安装脚本是必不可少的。当运维人员面对Oracle数据库安装时,应当检查并确保所有必需的依赖组件都已准备就绪,而本文档提供的资源将有助于降低安装成本,并确保安装过程的顺利进行。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

云计算术语全面掌握:从1+X样卷A卷中提炼精华

![云计算术语全面掌握:从1+X样卷A卷中提炼精华](https://ask.qcloudimg.com/http-save/yehe-1475574/696453895d391e6b0f0e27455ef79c8b.jpeg) # 摘要 本文全面解析了云计算的基础概念,并深入理解了云计算服务模型,包括IaaS、PaaS和SaaS的区别及其应用。文章详细探讨了云计算部署模型,包括公有云、私有云及混合云的架构优势和选择策略。同时,本文也实践应用了云计算的关键技术,如虚拟化、容器技术以及云安全策略。此外,文章探讨了云服务管理与监控的工具、最佳实践、性能监控以及合规性和可持续发展问题。最后,本文通
recommend-type

. 索读取⼀幅图像,让该图像拼接⾃身图像,分别⽤⽔ 平和垂直 2 种。要求运⾏结果弹窗以⾃⼰的名字全拼命名。

在Python中,我们可以使用PIL(Pillow)库来处理图像并实现您所描述的功能。首先,你需要安装PIL库,如果还没有安装,可以使用pip install pillow命令。以下是简单的步骤来实现这个功能: 1. 打开图像文件: ```python from PIL import Image def open_image_and_display(image_path): img = Image.open(image_path) ``` 2. 创建一个新的空白图像,用于存放拼接后的图像: ```python def create_concat_image(img, directi
recommend-type

Java基础实验教程Lab1解析

资源摘要信息:"Java Lab1实践教程" 本次提供的资源是一个名为"Lab1"的Java实验室项目,旨在帮助学习者通过实践来加深对Java编程语言的理解。从给定的文件信息来看,该项目的名称为"Lab1",它的描述同样是"Lab1",这表明这是一个基础的实验室练习,可能是用于介绍Java语言或设置一个用于后续实践的开发环境。文件列表中的"Lab1-master"表明这是一个主版本的压缩包,包含了多个文件和可能的子目录结构,用于确保完整性和便于版本控制。 ### Java知识点详细说明 #### 1. Java语言概述 Java是一种高级的、面向对象的编程语言,被广泛用于企业级应用开发。Java具有跨平台的特性,即“一次编写,到处运行”,这意味着Java程序可以在支持Java虚拟机(JVM)的任何操作系统上执行。 #### 2. Java开发环境搭建 对于一个Java实验室项目,首先需要了解如何搭建Java开发环境。通常包括以下步骤: - 安装Java开发工具包(JDK)。 - 配置环境变量(JAVA_HOME, PATH)以确保可以在命令行中使用javac和java命令。 - 使用集成开发环境(IDE),如IntelliJ IDEA, Eclipse或NetBeans,这些工具可以简化编码、调试和项目管理过程。 #### 3. Java基础语法 在Lab1中,学习者可能需要掌握一些Java的基础语法,例如: - 数据类型(基本类型和引用类型)。 - 变量的声明和初始化。 - 控制流语句,包括if-else, for, while和switch-case。 - 方法的定义和调用。 - 数组的使用。 #### 4. 面向对象编程概念 Java是一种面向对象的编程语言,Lab1项目可能会涉及到面向对象编程的基础概念,包括: - 类(Class)和对象(Object)的定义。 - 封装、继承和多态性的实现。 - 构造方法(Constructor)的作用和使用。 - 访问修饰符(如private, public)的使用,以及它们对类成员访问控制的影响。 #### 5. Java标准库使用 Java拥有一个庞大的标准库,Lab1可能会教授学习者如何使用其中的一些基础类和接口,例如: - 常用的java.lang包下的类,如String, Math等。 - 集合框架(Collections Framework),例如List, Set, Map等接口和实现类。 - 异常处理机制,包括try-catch块和异常类层次结构。 #### 6. 实验室项目实践 实践是学习编程最有效的方式之一。Lab1项目可能包含以下类型的实际练习: - 创建一个简单的Java程序,比如一个控制台计算器。 - 实现基本的数据结构和算法,如链表、排序和搜索。 - 解决特定的问题,比如输入处理和输出格式化。 #### 7. 项目组织和版本控制 "Lab1-master"文件名暗示该项目可能采用Git作为版本控制系统。在项目实践中,学习者可能需要了解: - 如何使用Git命令进行版本控制。 - 分支(Branch)的概念和合并(Merge)的策略。 - 创建和管理Pull Request来协作和审查代码。 #### 8. 代码规范和文档 良好的代码规范和文档对于保持代码的可读性和可维护性至关重要。Lab1项目可能会强调: - 遵循Java编码标准,例如命名约定、注释习惯。 - 编写文档注释(Javadoc),以便自动生成API文档。 通过Lab1项目的实践和指导,学习者能够逐步掌握Java编程语言的核心知识,并为后续更深入的学习和项目开发打下坚实的基础。