选用MS COCO数据集,使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,以加深对红外与可见光图像融合的理解,掌握图像融合、深度学习、多尺度分析的基本理论方法,实现红外与可见光图像的融合,包括训练、验证、测试等代码
时间: 2024-01-24 11:20:14 浏览: 71
红外和可见光图像融合,红外和可见光图像融合目的,Python
5星 · 资源好评率100%
很高兴能为您提供帮助。红外与可见光图像融合是一种重要的图像处理技术,可以将两种不同波段的图像信息融合在一起,从而形成更加全面、准确的图像。下面是使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型的步骤:
1. 数据准备
首先下载并解压缩MS COCO数据集,包括可见光图像和红外图像。将这两个文件夹分别放在一个文件夹中,命名为“visible”和“infrared”。然后,安装pycocotools和torchvision库,用于读取和处理MS COCO数据集。最后,创建一个名为“dataset.py”的Python文件,用于定义数据集类。
```python
import torch.utils.data as data
from PIL import Image
import os
import os.path
import numpy as np
import random
class Dataset(data.Dataset):
def __init__(self, root, transforms=None):
self.root = root
self.transforms = transforms
self.imgs = list(sorted(os.listdir(os.path.join(root, "visible"))))
def __getitem__(self, index):
img_path = os.path.join(self.root, "visible", self.imgs[index])
target_path = os.path.join(self.root, "infrared", self.imgs[index])
img = Image.open(img_path).convert("RGB")
target = Image.open(target_path).convert("L")
if self.transforms is not None:
img = self.transforms(img)
target = self.transforms(target)
return img, target
def __len__(self):
return len(self.imgs)
```
2. 定义模型
接下来,定义一个基于多尺度自编码网络的红外与可见光图像融合模型。这个模型包括一个编码器和一个解码器,其中编码器将输入的图像分解成多个尺度,解码器将这些尺度重新组合成一个融合图像。
```python
import torch.nn as nn
import torch.nn.functional as F
import torch
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(Encoder, self).__init__()
self.pool = nn.MaxPool2d(2, 2)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool(x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels):
super(Decoder, self).__init__()
self.conv1 = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, padding=1)
self.conv2 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=1)
self.conv3 = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=3, padding=1)
def forward(self, x):
x = F.interpolate(x, scale_factor=2, mode="nearest")
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.conv3(x)
return x
class Fusion(nn.Module):
def __init__(self, in_channels):
super(Fusion, self).__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def forward(self, visible, infrared):
x = torch.cat([visible, infrared], dim=1)
x = F.relu(self.conv(x))
return x
class MSFusion(nn.Module):
def __init__(self, in_channels):
super(MSFusion, self).__init__()
self.encoder1 = Encoder(in_channels, 32)
self.encoder2 = Encoder(32, 64)
self.encoder3 = Encoder(64, 128)
self.decoder1 = Decoder(128, 64)
self.decoder2 = Decoder(64, 32)
self.decoder3 = Decoder(32, in_channels)
self.fusion = Fusion(in_channels)
def forward(self, visible, infrared):
v1 = self.encoder1(visible)
v2 = self.encoder2(v1)
v3 = self.encoder3(v2)
i1 = self.encoder1(infrared)
i2 = self.encoder2(i1)
i3 = self.encoder3(i2)
x = self.fusion(v3, i3)
x1 = self.decoder1(x)
x2 = self.decoder2(x1 + v2)
x3 = self.decoder3(x2 + v1)
return x3
```
3. 定义训练函数
接下来,定义一个训练函数,用于训练和验证MSFusion模型。在训练期间,使用Adam优化器和L1损失函数。
```python
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
def train_model(model, criterion, optimizer, dataloaders, device, num_epochs=25):
for epoch in range(num_epochs):
for phase in ['train', 'val']:
if phase == 'train':
model.train()
else:
model.eval()
running_loss = 0.0
for inputs, targets in dataloaders[phase]:
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs, targets)
loss = criterion(outputs, targets)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
print('Epoch {}/{} | {} Loss: {:.4f}'.format(epoch+1, num_epochs, phase, epoch_loss))
return model
```
4. 开始训练
现在,我们可以开始训练MSFusion模型了。首先定义一些超参数,并对图像进行预处理。然后,将数据集划分为训练集和验证集,使用上面定义的训练函数进行训练。
```python
batch_size = 16
num_epochs = 10
lr = 0.001
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
dataset = Dataset("path/to/coco", transforms=transforms)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
dataloaders = {
'train': train_loader,
'val': val_loader
}
model = MSFusion(in_channels=4)
model = model.to(device)
criterion = nn.L1Loss()
optimizer = optim.Adam(model.parameters(), lr=lr)
model = train_model(model, criterion, optimizer, dataloaders, device, num_epochs=num_epochs)
```
5. 测试模型
最后,我们可以使用MSFusion模型对测试图像进行融合。首先加载模型的权重,然后对测试图像进行预处理并将其传递给模型进行融合。最后,保存融合图像。
```python
model.load_state_dict(torch.load("path/to/weights"))
transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
img1 = Image.open("path/to/visible/image").convert("RGB")
img2 = Image.open("path/to/infrared/image").convert("L")
img1 = transforms(img1).unsqueeze(0)
img2 = transforms(img2).unsqueeze(0)
img1 = img1.to(device)
img2 = img2.to(device)
output = model(img1, img2).squeeze(0)
output = output.cpu().detach().numpy()
output = np.transpose(output, (1, 2, 0))
output = (output * 255).astype(np.uint8)
output = Image.fromarray(output)
output.save("path/to/output/image")
```
这就是使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型的全部步骤。希望能对你有所帮助!
阅读全文