使用pytorch训练一个基于多尺度自自编码网络,用COCO数据集训练,通过网络中的encoder函数编码输入图像,再由decoder函数解码特征重建图像并计算重建图像与源图像的损失,保存模型,用该模型进行可见光与红外图像的融合,给出代码
时间: 2023-07-16 13:13:25 浏览: 114
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
好的,以下是使用PyTorch训练基于多尺度自编码网络的代码,其中使用COCO数据集进行训练,并使用训练好的模型进行可见光与红外图像的融合。
首先,需要安装 PyTorch 和 torchvision 库,可以使用以下命令进行安装:
```
pip install torch torchvision
```
然后,下载并解压 COCO 数据集,可以使用以下命令进行下载:
```
wget http://images.cocodataset.org/zips/train2017.zip
```
接着,可以使用以下代码进行数据预处理和加载:
```python
import torch
import torchvision
from torchvision import transforms
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
trainset = torchvision.datasets.CocoDetection(root='./train2017',
annFile='./annotations/instances_train2017.json',
transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=2)
```
接下来,可以定义多尺度自编码网络的 encoder 和 decoder 函数:
```python
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.conv5 = nn.Conv2d(512, 1024, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = self.pool(x)
x = nn.functional.relu(self.conv2(x))
x = self.pool(x)
x = nn.functional.relu(self.conv3(x))
x = self.pool(x)
x = nn.functional.relu(self.conv4(x))
x = self.pool(x)
x = nn.functional.relu(self.conv5(x))
return x
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.conv1 = nn.Conv2d(1024, 512, 3, padding=1)
self.conv2 = nn.Conv2d(512, 256, 3, padding=1)
self.conv3 = nn.Conv2d(256, 128, 3, padding=1)
self.conv4 = nn.Conv2d(128, 64, 3, padding=1)
self.conv5 = nn.Conv2d(64, 3, 3, padding=1)
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = self.upsample(x)
x = nn.functional.relu(self.conv2(x))
x = self.upsample(x)
x = nn.functional.relu(self.conv3(x))
x = self.upsample(x)
x = nn.functional.relu(self.conv4(x))
x = self.upsample(x)
x = self.conv5(x)
return x
```
接着,可以定义训练函数和测试函数:
```python
import torch.optim as optim
def train(encoder, decoder, criterion, optimizer, dataloader):
encoder.train()
decoder.train()
running_loss = 0.0
for i, data in enumerate(dataloader, 0):
inputs, _ = data
optimizer.zero_grad()
# 编码输入图像
features = encoder(inputs)
# 解码特征并计算损失
outputs = decoder(features)
loss = criterion(outputs, inputs)
# 反向传播和优化
loss.backward()
optimizer.step()
# 计算损失
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
def test(encoder, decoder, dataloader):
encoder.eval()
decoder.eval()
with torch.no_grad():
for data in dataloader:
inputs, _ = data
# 编码输入图像
features = encoder(inputs)
# 解码特征并计算损失
outputs = decoder(features)
loss = criterion(outputs, inputs)
# 显示原始图像和重构图像
imshow(torchvision.utils.make_grid(inputs))
imshow(torchvision.utils.make_grid(outputs))
```
最后,可以进行训练和测试:
```python
# 创建网络和优化器
encoder = Encoder()
decoder = Decoder()
criterion = nn.MSELoss()
optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=0.001)
# 训练模型
for epoch in range(10):
train(encoder, decoder, criterion, optimizer, trainloader)
# 保存模型
torch.save({'encoder_state_dict': encoder.state_dict(),
'decoder_state_dict': decoder.state_dict()}, 'model.pth')
# 加载模型
checkpoint = torch.load('model.pth')
encoder.load_state_dict(checkpoint['encoder_state_dict'])
decoder.load_state_dict(checkpoint['decoder_state_dict'])
# 加载可见光和红外图像
visible_image = Image.open('visible.jpg')
infrared_image = Image.open('infrared.jpg')
# 预处理图像
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
visible_image = transform(visible_image).unsqueeze(0)
infrared_image = transform(infrared_image).unsqueeze(0)
# 编码输入图像
visible_features = encoder(visible_image)
infrared_features = encoder(infrared_image)
# 融合特征并解码
features = torch.cat((visible_features, infrared_features), dim=1)
outputs = decoder(features)
# 显示融合结果
imshow(torchvision.utils.make_grid(outputs))
```
阅读全文