使用coco数据集,使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,实现红外与可见光图像的融合的实验结果及分析

时间: 2024-02-03 14:12:07 浏览: 47
首先,需要准备好coco数据集,包括可见光图像和红外图像。然后,使用pytorch搭建多尺度自编码网络(MSAE)模型,用于学习红外和可见光图像的特征表示,并将这些特征表示进行融合,得到一张融合图像。 下面是一个简单的代码示例: ```python import torch import torch.nn as nn import torch.optim as optim # 定义多尺度自编码网络模型 class MSAE(nn.Module): def __init__(self): super(MSAE, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, kernel_size=2, stride=2), nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x # 定义训练函数 def train(model, train_loader, optimizer, criterion): model.train() train_loss = 0 for batch_idx, (data1, data2) in enumerate(train_loader): data1, data2 = data1.to(device), data2.to(device) optimizer.zero_grad() output1 = model(data1) output2 = model(data2) loss = criterion(output1, data2) + criterion(output2, data1) loss.backward() optimizer.step() train_loss += loss.item() return train_loss / len(train_loader) # 定义测试函数 def test(model, test_loader, criterion): model.eval() test_loss = 0 with torch.no_grad(): for batch_idx, (data1, data2) in enumerate(test_loader): data1, data2 = data1.to(device), data2.to(device) output1 = model(data1) output2 = model(data2) loss = criterion(output1, data2) + criterion(output2, data1) test_loss += loss.item() return test_loss / len(test_loader) # 设置超参数 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = 32 lr = 0.001 num_epochs = 10 # 加载数据集 train_loader = torch.utils.data.DataLoader(coco_train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(coco_test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型、优化器和损失函数 model = MSAE().to(device) optimizer = optim.Adam(model.parameters(), lr=lr) criterion = nn.MSELoss() # 训练模型 for epoch in range(num_epochs): train_loss = train(model, train_loader, optimizer, criterion) test_loss = test(model, test_loader, criterion) print('Epoch: {} Train Loss: {:.6f} Test Loss: {:.6f}'.format(epoch+1, train_loss, test_loss)) # 测试模型 data1, data2 = next(iter(test_loader)) data1, data2 = data1.to(device), data2.to(device) output1 = model(data1) output2 = model(data2) # 展示可见光图像、红外图像和融合图像 import matplotlib.pyplot as plt fig, axs = plt.subplots(3, 3, figsize=(12, 12)) for i in range(3): axs[i, 0].imshow(data1[i].cpu().numpy().transpose(1, 2, 0)) axs[i, 0].set_title('Visible Image') axs[i, 1].imshow(data2[i].cpu().numpy().transpose(1, 2, 0)) axs[i, 1].set_title('Infrared Image') axs[i, 2].imshow(output1[i].cpu().numpy().transpose(1, 2, 0)) axs[i, 2].set_title('Fused Image') plt.show() ``` 在训练模型时,我们使用MSE损失函数来度量融合图像和真实图像之间的差异。在测试模型时,我们使用测试集中的一批数据来生成融合图像,并将其与可见光和红外图像一起展示出来。 实验结果可能因数据集、网络架构、超参数等不同而有所不同。但是,通过对模型的训练和测试,我们可以得出关于模型性能和可见光图像、红外图像和融合图像之间关系的有用信息。

相关推荐

zip
基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

自己编写的python 程序计算cpk/ppk

cpk&ppk python 小程序,品友点评
recommend-type

基于Springboot开发的分布式抽奖系统.zip

基于springboot的java毕业&课程设计
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。