使用coco数据集,使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,实现红外与可见光图像的融合的实验结果及分析
时间: 2024-02-03 12:12:07 浏览: 215
首先,需要准备好coco数据集,包括可见光图像和红外图像。然后,使用pytorch搭建多尺度自编码网络(MSAE)模型,用于学习红外和可见光图像的特征表示,并将这些特征表示进行融合,得到一张融合图像。
下面是一个简单的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义多尺度自编码网络模型
class MSAE(nn.Module):
def __init__(self):
super(MSAE, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=2, stride=2),
nn.Sigmoid()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion):
model.train()
train_loss = 0
for batch_idx, (data1, data2) in enumerate(train_loader):
data1, data2 = data1.to(device), data2.to(device)
optimizer.zero_grad()
output1 = model(data1)
output2 = model(data2)
loss = criterion(output1, data2) + criterion(output2, data1)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_loader)
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
with torch.no_grad():
for batch_idx, (data1, data2) in enumerate(test_loader):
data1, data2 = data1.to(device), data2.to(device)
output1 = model(data1)
output2 = model(data2)
loss = criterion(output1, data2) + criterion(output2, data1)
test_loss += loss.item()
return test_loss / len(test_loader)
# 设置超参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 32
lr = 0.001
num_epochs = 10
# 加载数据集
train_loader = torch.utils.data.DataLoader(coco_train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(coco_test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型、优化器和损失函数
model = MSAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()
# 训练模型
for epoch in range(num_epochs):
train_loss = train(model, train_loader, optimizer, criterion)
test_loss = test(model, test_loader, criterion)
print('Epoch: {} Train Loss: {:.6f} Test Loss: {:.6f}'.format(epoch+1, train_loss, test_loss))
# 测试模型
data1, data2 = next(iter(test_loader))
data1, data2 = data1.to(device), data2.to(device)
output1 = model(data1)
output2 = model(data2)
# 展示可见光图像、红外图像和融合图像
import matplotlib.pyplot as plt
fig, axs = plt.subplots(3, 3, figsize=(12, 12))
for i in range(3):
axs[i, 0].imshow(data1[i].cpu().numpy().transpose(1, 2, 0))
axs[i, 0].set_title('Visible Image')
axs[i, 1].imshow(data2[i].cpu().numpy().transpose(1, 2, 0))
axs[i, 1].set_title('Infrared Image')
axs[i, 2].imshow(output1[i].cpu().numpy().transpose(1, 2, 0))
axs[i, 2].set_title('Fused Image')
plt.show()
```
在训练模型时,我们使用MSE损失函数来度量融合图像和真实图像之间的差异。在测试模型时,我们使用测试集中的一批数据来生成融合图像,并将其与可见光和红外图像一起展示出来。
实验结果可能因数据集、网络架构、超参数等不同而有所不同。但是,通过对模型的训练和测试,我们可以得出关于模型性能和可见光图像、红外图像和融合图像之间关系的有用信息。
阅读全文