使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,第一阶段训练一个自动编码器网络,数据集COCO用于训练自编码器网络,保存模型,并用该模型对红外与可见光图像进行编码融合,保存融合结果到result,给出具体代码
时间: 2023-07-15 07:13:18 浏览: 91
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
好的,以下是基于多尺度自编码网络的红外与可见光图像融合的模型的代码实现:
首先是自动编码器网络的训练部分:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义自动编码器网络
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# 定义训练函数
def train_autoencoder(model, train_loader, num_epochs, learning_rate):
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
for epoch in range(num_epochs):
for data in train_loader:
img, _ = data
img = img.cuda()
output = model(img)
loss = criterion(output, img)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
torch.save(model.state_dict(), 'autoencoder_model.pth')
# 数据集COCO的路径
data_path = 'path/to/coco/dataset'
# 定义数据预处理方式
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
# 加载COCO数据集
train_dataset = datasets.CocoDetection(root=data_path, annFile=data_path+'/annotations/instances_train2017.json', transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 定义模型并进行训练
model = AutoEncoder().cuda()
train_autoencoder(model, train_loader, num_epochs=50, learning_rate=1e-3)
```
接下来是红外与可见光图像融合的部分:
```python
import cv2
import numpy as np
from PIL import Image
import torch.nn.functional as F
# 定义多尺度自编码网络
class MultiScaleAutoEncoder(nn.Module):
def __init__(self):
super(MultiScaleAutoEncoder, self).__init__()
self.encoder1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder2 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.decoder1 = nn.Sequential(
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.Tanh()
)
self.decoder2 = nn.Sequential(
nn.ConvTranspose2d(256, 128, kernel_size=5, stride=2, padding=2, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=5, stride=2, padding=2, output_padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=5, stride=2, padding=2, output_padding=1),
nn.Tanh()
)
def forward(self, x):
x1 = self.encoder1(x)
x2 = self.encoder2(x)
y1 = self.decoder1(x1)
y2 = self.decoder2(x2)
return y1, y2
# 加载自动编码器模型
autoencoder = AutoEncoder().cuda()
autoencoder.load_state_dict(torch.load('autoencoder_model.pth'))
# 加载多尺度自编码网络模型
model = MultiScaleAutoEncoder().cuda()
model.eval()
# 加载红外与可见光图像
img1 = cv2.imread('path/to/infrared/image')
img2 = cv2.imread('path/to/visible/image')
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 图像预处理
img1 = cv2.resize(img1, (256, 256))
img2 = cv2.resize(img2, (256, 256))
img1 = Image.fromarray(img1)
img2 = Image.fromarray(img2)
transform = transforms.Compose([
transforms.ToTensor(),
])
img1 = transform(img1).unsqueeze(0).cuda()
img2 = transform(img2).unsqueeze(0).cuda()
# 编码融合
with torch.no_grad():
y1, y2 = model(torch.cat((autoencoder.encoder(img1), autoencoder.encoder(img2)), dim=1))
y1 = F.interpolate(y1, size=(img1.size(2), img1.size(3)), mode='bilinear', align_corners=False)
y2 = F.interpolate(y2, size=(img2.size(2), img2.size(3)), mode='bilinear', align_corners=False)
y1 = y1.cpu().numpy().squeeze().transpose((1, 2, 0))
y2 = y2.cpu().numpy().squeeze().transpose((1, 2, 0))
result = np.concatenate((y1, y2), axis=2)
result = (result + 1) / 2 * 255
result = np.clip(result, 0, 255).astype(np.uint8)
# 保存融合结果
cv2.imwrite('result.png', result)
```
以上代码实现了基于多尺度自编码网络的红外与可见光图像融合的模型,其中使用了COCO数据集训练了自动编码器网络,并将其应用于红外与可见光图像的编码融合。
阅读全文