使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,包括训练、测试、验证环节的代码
时间: 2024-01-22 22:19:37 浏览: 126
红外与可见光图像自适应融合源代码
以下是基于多尺度自编码网络的红外与可见光图像融合模型的训练、测试和验证代码。这里使用PyTorch框架实现。
首先,我们导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from dataset import FusionDataset
from model import MEFNet
```
其中,`FusionDataset`是我们自定义的数据集类,用于加载红外和可见光图像对;`MEFNet`是我们定义的基于多尺度自编码网络的融合模型。
接下来,我们定义一些超参数和模型训练的相关函数:
```python
# 超参数
batch_size = 4
num_epochs = 50
lr = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据增强
data_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor()
])
# 数据集
train_dataset = FusionDataset('train', transform=data_transforms)
val_dataset = FusionDataset('val', transform=transforms.ToTensor())
# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# 模型
model = MEFNet().to(device)
# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# 训练函数
def train(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
for i, data in enumerate(dataloader):
inputs, targets = data
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss
# 验证函数
def validate(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
with torch.no_grad():
for i, data in enumerate(dataloader):
inputs, targets = data
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss
```
在上述代码中,我们定义了超参数,数据增强的方式,数据集和数据加载器,模型,损失函数和优化器,以及训练和验证的函数。其中,`train`函数用于进行模型的训练,`validate`函数用于进行模型的验证。
接下来,我们可以开始训练模型:
```python
# 训练和验证
best_loss = float('inf')
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
val_loss = validate(model, val_loader, criterion, device)
print(f'Epoch {epoch+1}/{num_epochs} - Training Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}')
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), 'best_model.pth')
```
在训练过程中,我们每个epoch都进行一次训练和验证,并且记录当前的训练损失和验证损失。如果验证损失比之前的最佳损失还要小,就保存当前模型参数。
最后,我们可以使用测试数据集对模型进行测试,计算其性能指标:
```python
# 测试
test_dataset = FusionDataset('test', transform=transforms.ToTensor())
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model.load_state_dict(torch.load('best_model.pth'))
model.eval()
test_loss = validate(model, test_loader, criterion, device)
print(f'Test Loss: {test_loss:.4f}')
```
在测试过程中,我们加载之前保存的最佳模型参数,并使用`validate`函数计算测试损失。
完整的代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from dataset import FusionDataset
from model import MEFNet
# 超参数
batch_size = 4
num_epochs = 50
lr = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据增强
data_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor()
])
# 数据集
train_dataset = FusionDataset('train', transform=data_transforms)
val_dataset = FusionDataset('val', transform=transforms.ToTensor())
# 数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# 模型
model = MEFNet().to(device)
# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# 训练函数
def train(model, dataloader, criterion, optimizer, device):
model.train()
running_loss = 0.0
for i, data in enumerate(dataloader):
inputs, targets = data
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss
# 验证函数
def validate(model, dataloader, criterion, device):
model.eval()
running_loss = 0.0
with torch.no_grad():
for i, data in enumerate(dataloader):
inputs, targets = data
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(dataloader.dataset)
return epoch_loss
# 训练和验证
best_loss = float('inf')
for epoch in range(num_epochs):
train_loss = train(model, train_loader, criterion, optimizer, device)
val_loss = validate(model, val_loader, criterion, device)
print(f'Epoch {epoch+1}/{num_epochs} - Training Loss: {train_loss:.4f}, Validation Loss: {val_loss:.4f}')
if val_loss < best_loss:
best_loss = val_loss
torch.save(model.state_dict(), 'best_model.pth')
# 测试
test_dataset = FusionDataset('test', transform=transforms.ToTensor())
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model.load_state_dict(torch.load('best_model.pth'))
model.eval()
test_loss = validate(model, test_loader, criterion, device)
print(f'Test Loss: {test_loss:.4f}')
```
其中,`dataset.py`和`model.py`分别是我们自定义的数据集和模型类,可以根据具体需求进行修改。
阅读全文