使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,实现红外与可见光图像的融合的代码文件
时间: 2023-10-26 09:07:13 浏览: 112
使用深度学习框架(Pytorch) 的 红外和可见光图像融合_Jupyter_python代码_下载
5星 · 资源好评率100%
这是一个基于多尺度自编码网络的红外与可见光图像融合的模型,使用PyTorch实现。以下是代码文件:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool1(x)
x = F.relu(self.conv3(x))
x = self.pool2(x)
x = F.relu(self.conv4(x))
x = self.pool3(x)
return x
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.conv1 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1)
self.upsample1 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv2 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.upsample2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv3 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
self.upsample3 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv4 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.upsample1(x)
x = F.relu(self.conv2(x))
x = self.upsample2(x)
x = F.relu(self.conv3(x))
x = self.upsample3(x)
x = torch.sigmoid(self.conv4(x))
return x
class MultiScaleAutoEncoder(nn.Module):
def __init__(self):
super(MultiScaleAutoEncoder, self).__init__()
self.encoder1 = Encoder()
self.encoder2 = Encoder()
self.decoder1 = Decoder()
self.decoder2 = Decoder()
def forward(self, x1, x2):
code1 = self.encoder1(x1)
code2 = self.encoder2(x2)
fused_code = code1 + code2
x1_recon = self.decoder1(code1)
x2_recon = self.decoder2(code2)
fused_image = self.decoder1(fused_code)
return x1_recon, x2_recon, fused_image
```
在训练时,可以使用以下代码:
```python
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.transforms import transforms
# Define data loader
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
dataset = ImageFolder('./data', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# Define model and optimizer
model = MultiScaleAutoEncoder()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Train the model
for epoch in range(100):
for x1, x2 in dataloader:
optimizer.zero_grad()
x1_recon, x2_recon, fused_image = model(x1, x2)
loss = F.mse_loss(x1_recon, x1) + F.mse_loss(x2_recon, x2) + F.mse_loss(fused_image, x1) + F.mse_loss(fused_image, x2)
loss.backward()
optimizer.step()
print('Epoch %d, loss %.4f' % (epoch, loss.item()))
```
其中,`./data` 是存储训练数据的文件夹路径。在训练时,我们对每个输入图像对(即红外图像和可见光图像)分别计算重构误差和融合误差,并将它们加权求和作为总损失。在这个例子中,我们使用了均方误差(MSE)作为损失函数,但你也可以尝试其他的损失函数。
阅读全文