使用pytorch训练一个基于多尺度自编码网络,实现红外与可见光图像融合的模型的包括测试训练验证等代码
时间: 2024-02-01 07:12:16 浏览: 108
这是一个比较复杂的任务,需要涉及到多种技术(如自编码网络、多尺度处理、图像融合等),下面是一个可能的实现过程:
## 1. 数据准备
首先需要准备红外图像和可见光图像的数据集,可以使用现有的数据集,也可以自己收集。为了方便起见,这里假设已经有了两个文件夹,分别存储红外图像和可见光图像,每个文件夹中的图片名称是一一对应的。
## 2. 构建模型
接下来需要构建一个基于多尺度自编码网络的模型。这里使用PyTorch框架实现,具体代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(256)
self.relu4 = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu3(out)
out = self.conv4(out)
out = self.bn4(out)
out = self.relu4(out)
return out
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.conv1 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(128)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(32)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.ConvTranspose2d(32, 3, kernel_size=3, stride=1, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.relu3(out)
out = self.conv4(out)
out = torch.sigmoid(out) # 使用sigmoid函数将像素值限制在[0,1]之间
return out
class MultiScaleAutoEncoder(nn.Module):
def __init__(self):
super(MultiScaleAutoEncoder, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
out = self.encoder(x)
out = self.decoder(out)
return out
```
这里的模型包含了一个编码器(Encoder)、一个解码器(Decoder)和一个多尺度自编码网络(MultiScaleAutoEncoder)。编码器将输入的图像进行特征提取,解码器将特征转换成输出图像,多尺度自编码网络将多个不同尺度的图像分别输入到编码器和解码器中。
## 3. 训练模型
有了模型之后,就可以开始训练了。训练代码如下:
```python
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from dataset import MyDataset # 自定义数据集类
# 定义超参数
batch_size = 32
lr = 1e-3
num_epochs = 50
# 定义数据增强
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
# 加载数据集
dataset = MyDataset('path/to/infrared/images', 'path/to/visible/images', transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义模型和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MultiScaleAutoEncoder().to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
# 开始训练
for epoch in range(num_epochs):
for i, batch in enumerate(dataloader):
infrared_images, visible_images = batch['infrared'].to(device), batch['visible'].to(device)
outputs = model(torch.cat((infrared_images, visible_images), dim=1)) # 将红外图像和可见光图像拼接在一起
loss = F.mse_loss(outputs, visible_images) # 计算均方误差损失
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.6f}'.format(epoch+1, num_epochs, i+1, len(dataloader), loss.item()))
# 每个epoch结束后保存模型
torch.save(model.state_dict(), 'model_{}.ckpt'.format(epoch+1))
```
这里使用了自定义的数据集类 `MyDataset`,可以根据实际情况修改。训练过程中使用了均方误差损失函数(MSE Loss)和Adam优化器。
## 4. 测试模型
训练完成后,可以使用测试集来评估模型的性能。测试代码如下:
```python
import os
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import MultiScaleAutoEncoder
# 定义超参数
model_path = 'model_50.ckpt'
infrared_image_path = 'path/to/test/infrared/image'
visible_image_path = 'path/to/test/visible/image'
# 定义数据增强
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MultiScaleAutoEncoder().to(device)
model.load_state_dict(torch.load(model_path))
# 加载测试图像并进行预测
infrared_image = transform(Image.open(infrared_image_path)).unsqueeze(0).to(device)
visible_image = transform(Image.open(visible_image_path)).unsqueeze(0).to(device)
output_image = model(torch.cat((infrared_image, visible_image), dim=1)).squeeze().cpu().detach().numpy()
# 保存预测结果
output_image = (output_image * 255).astype('uint8')
output_image = Image.fromarray(output_image.transpose(1, 2, 0))
output_image.save('output.png')
```
这里假设已经有了一对红外图像和可见光图像用于测试,分别存储在 `infrared_image_path` 和 `visible_image_path` 中。测试过程中,首先加载模型,并将测试图像输入到模型中进行预测,最后将预测结果保存为一张图片。
## 5. 验证模型
验证模型的性能是一个重要的环节,可以使用各种评价指标来衡量模型的性能。这里简单介绍两个指标:PSNR和SSIM。它们都是用来度量两张图像之间的相似度,具体计算方式可以参考维基百科。
```python
import os
import torch
import torchvision.transforms as transforms
from PIL import Image
from skimage.metrics import peak_signal_noise_ratio, structural_similarity
from model import MultiScaleAutoEncoder
# 定义超参数
model_path = 'model_50.ckpt'
infrared_image_path = 'path/to/validation/infrared/image'
visible_image_path = 'path/to/validation/visible/image'
# 定义数据增强
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MultiScaleAutoEncoder().to(device)
model.load_state_dict(torch.load(model_path))
# 加载验证图像并进行预测
infrared_image = transform(Image.open(infrared_image_path)).unsqueeze(0).to(device)
visible_image = transform(Image.open(visible_image_path)).unsqueeze(0).to(device)
output_image = model(torch.cat((infrared_image, visible_image), dim=1)).squeeze().cpu().detach().numpy()
# 计算PSNR和SSIM
output_image = (output_image * 255).astype('uint8')
infrared_image = transform(Image.open(infrared_image_path)).squeeze().cpu().detach().numpy()
visible_image = transform(Image.open(visible_image_path)).squeeze().cpu().detach().numpy()
psnr = peak_signal_noise_ratio(visible_image, output_image)
ssim = structural_similarity(visible_image, output_image, multichannel=True)
print('PSNR: {}, SSIM: {}'.format(psnr, ssim))
```
这里假设已经有了一对红外图像和可见光图像用于验证,分别存储在 `infrared_image_path` 和 `visible_image_path` 中。验证过程中,首先加载模型,并将验证图像输入到模型中进行预测,最后计算PSNR和SSIM两个指标。
阅读全文