使用pytorch训练一个基于多尺度自编码网络的红外与可见光图像融合的模型,对红外图像与可见光图像进行融合,保存融合结果
时间: 2023-07-15 15:12:22 浏览: 122
红外和可见光图像融合,红外和可见光图像融合目的,Python
5星 · 资源好评率100%
好的,你需要准备以下数据和工具:
1. 红外图像和可见光图像数据集,可以在网上下载或自己收集。
2. PyTorch深度学习框架。
3. 多尺度自编码网络的代码实现,可以在GitHub等代码分享平台上找到。
接下来,我们按照以下步骤进行:
1. 导入必要的库和模块。
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.optim as optim
from torch.utils.data import DataLoader
import os
import numpy as np
import cv2
```
2. 定义多尺度自编码网络的模型结构。
```python
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, stride=1, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, 3, stride=1, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(128, 256, 3, stride=1, padding=1)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(256, 512, 3, stride=1, padding=1)
self.relu4 = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=True)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.pool(x)
x = self.conv4(x)
x = self.relu4(x)
x = self.pool(x)
return x
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.conv1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.ConvTranspose2d(64, 3, kernel_size=2, stride=2)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.conv4(x)
return x
class MultiScaleAutoEncoder(nn.Module):
def __init__(self):
super(MultiScaleAutoEncoder, self).__init__()
self.encoder1 = Encoder()
self.encoder2 = Encoder()
self.encoder3 = Encoder()
self.decoder1 = Decoder()
self.decoder2 = Decoder()
self.decoder3 = Decoder()
def forward(self, x):
x1, indices1 = self.encoder1(x)
x2, indices2 = self.encoder2(x1)
x3, indices3 = self.encoder3(x2)
y3 = self.decoder3(x3)
y2 = self.decoder2(torch.max_unpool2d(y3, indices3, kernel_size=2, stride=2))
y1 = self.decoder1(torch.max_unpool2d(y2, indices2, kernel_size=2, stride=2))
y = self.decoder1(torch.max_unpool2d(y1, indices1, kernel_size=2, stride=2))
return y
```
3. 定义训练函数。
```python
def train(model, train_loader, optimizer, criterion, device):
model.train()
train_loss = 0.0
for i, data in enumerate(train_loader):
inputs, _ = data
inputs = inputs.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
return train_loss / len(train_loader.dataset)
```
4. 定义测试函数。
```python
def test(model, test_loader, device):
model.eval()
test_loss = 0.0
with torch.no_grad():
for i, data in enumerate(test_loader):
inputs, _ = data
inputs = inputs.to(device)
outputs = model(inputs)
loss = criterion(outputs, inputs)
test_loss += loss.item() * inputs.size(0)
return test_loss / len(test_loader.dataset)
```
5. 加载数据集并进行预处理。
```python
train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
test_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
train_dataset = datasets.ImageFolder('train', transform=train_transforms)
test_dataset = datasets.ImageFolder('test', transform=test_transforms)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=16, shuffle=False, num_workers=4)
```
6. 初始化模型、损失函数和优化器。
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MultiScaleAutoEncoder().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
7. 进行训练和测试,并保存融合结果。
```python
num_epochs = 10
best_loss = float('inf')
for epoch in range(num_epochs):
train_loss = train(model, train_loader, optimizer, criterion, device)
test_loss = test(model, test_loader, device)
print('Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}'.format(epoch+1, train_loss, test_loss))
if test_loss < best_loss:
best_loss = test_loss
torch.save(model.state_dict(), 'model.pth')
model.load_state_dict(torch.load('model.pth'))
model.eval()
ir_path = 'ir.jpg'
vis_path = 'vis.jpg'
ir_img = cv2.imread(ir_path)
vis_img = cv2.imread(vis_path)
ir_img = cv2.cvtColor(ir_img, cv2.COLOR_BGR2RGB)
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_BGR2RGB)
ir_tensor = torch.tensor(ir_img).unsqueeze(0).permute(0, 3, 1, 2).to(device)
vis_tensor = torch.tensor(vis_img).unsqueeze(0).permute(0, 3, 1, 2).to(device)
fusion_tensor = model(torch.cat((ir_tensor, vis_tensor), dim=1))
fusion_img = fusion_tensor.cpu().squeeze(0).permute(1, 2, 0).numpy()
fusion_img = (fusion_img * 255).astype(np.uint8)
cv2.imwrite('fusion.jpg', fusion_img)
```
运行完毕后,会在当前目录下生成一个名为“fusion.jpg”的文件,保存了红外图像与可见光图像融合的结果。
阅读全文