CNN+swin transformer
时间: 2023-12-21 14:31:47 浏览: 201
Swin-Transformer
CNN+swin transformer是一种结合了卷积神经网络(CNN)和Swin Transformer的模型架构。Swin Transformer是一种基于Transformer的图像分类模型,它通过引入局部窗口机制和分层的Transformer结构来处理图像数据。CNN+swin transformer的目标是结合CNN的优势(对局部特征的提取)和Swin Transformer的优势(对全局特征的建模),以提高图像分类的性能。
下面是一个示例代码,展示了如何使用CNN+swin transformer进行图像分类:
```python
import torch
import torch.nn as nn
from torchvision.models import resnet50
from swin_transformer import SwinTransformer
# 定义CNN+swin transformer模型
class CNN_SwinTransformer(nn.Module):
def __init__(self, num_classes):
super(CNN_SwinTransformer, self).__init__()
self.cnn = resnet50(pretrained=True)
self.swin_transformer = SwinTransformer(
hidden_dim=96,
layers=[2, 2, 18, 2],
heads=[3, 6, 12, 24],
num_classes=num_classes
)
def forward(self, x):
features = self.cnn(x)
output = self.swin_transformer(features)
return output
# 创建CNN+Swin Transformer模型实例
model = CNN_SwinTransformer(num_classes=10)
# 加载预训练权重
model.load_state_dict(torch.load('cnn_swin_transformer.pth'))
# 将图像输入模型进行分类
input_image = torch.randn(1, 3, 224, 224)
output = model(input_image)
# 输出分类结果
_, predicted_class = torch.max(output, 1)
print("Predicted class:", predicted_class.item())
```
这段代码首先定义了一个CNN_SwinTransformer类,其中包含了一个预训练的CNN模型(这里使用了ResNet-50)和一个Swin Transformer模型。然后,创建了一个CNN_SwinTransformer模型实例,并加载了预训练权重。最后,将输入图像传入模型进行分类,并输出分类结果。
阅读全文