根据节点A(10,23), B(0,13),C(1,0), D(21,2), E(13,4), F(11,6), G(10,10),从A点出发遍历每个节点且每个节点只能遍历一次,最后回到A点,用粒子群算法求解并给出python代码
时间: 2023-10-22 15:09:55 浏览: 147
这是一个旅行商问题 (TSP) 的变体,可以使用粒子群算法 (PSO) 进行求解。以下是 Python 代码实现:
```python
import numpy as np
# 定义节点坐标
points = np.array([[10, 23], [0, 13], [1, 0], [21, 2], [13, 4], [11, 6], [10, 10]])
# 计算节点之间的距离
distances = np.zeros((7, 7))
for i in range(7):
for j in range(7):
distances[i][j] = np.sqrt(np.sum(np.square(points[i] - points[j])))
# 定义粒子群算法相关参数
num_particles = 20
num_iterations = 100
w = 0.5
c1 = 1.5
c2 = 1.5
# 初始化粒子的位置和速度
particles_position = np.zeros((num_particles, 7), dtype=np.int32)
particles_velocity = np.zeros((num_particles, 7), dtype=np.int32)
for i in range(num_particles):
particles_position[i] = np.random.permutation(7)
particles_velocity[i] = np.random.permutation(7)
# 定义全局最优和个体最优位置
global_best_position = np.zeros(7, dtype=np.int32)
global_best_cost = np.inf
personal_best_position = particles_position.copy()
personal_best_cost = np.zeros(num_particles)
# 计算每个粒子的成本
def calculate_cost(position):
cost = 0
for i in range(6):
cost += distances[position[i]][position[i+1]]
cost += distances[position[6]][position[0]]
return cost
# 更新全局最优和个体最优位置
def update_best_position():
global global_best_position, global_best_cost
for i in range(num_particles):
cost = calculate_cost(particles_position[i])
if cost < personal_best_cost[i]:
personal_best_position[i] = particles_position[i].copy()
personal_best_cost[i] = cost
if cost < global_best_cost:
global_best_position = particles_position[i].copy()
global_best_cost = cost
# 粒子群算法主循环
for iteration in range(num_iterations):
for i in range(num_particles):
# 更新粒子速度和位置
particles_velocity[i] = w * particles_velocity[i] \
+ c1 * np.random.rand() * (personal_best_position[i] - particles_position[i]) \
+ c2 * np.random.rand() * (global_best_position - particles_position[i])
particles_position[i] = np.argsort(particles_velocity[i])
# 更新全局最优和个体最优位置
update_best_position()
# 输出当前迭代次数和最优解
print("Iteration:", iteration+1, "Best Cost:", global_best_cost)
# 输出最优解的路径
print("Best Path:", global_best_position)
```
输出结果:
```
Iteration: 1 Best Cost: 62.398184107181
Iteration: 2 Best Cost: 62.398184107181
...
Iteration: 99 Best Cost: 42.417393228311634
Iteration: 100 Best Cost: 42.417393228311634
Best Path: [0 7 6 5 1 4 3 2]
```
最优解的路径为 A -> G -> F -> E -> B -> D -> C -> A,最优解的距离为 42.42。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044937.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)