写一段强化学习代码,要求如下:①python3.7解释器②pytorch版本为1.7.1③PPO算法且输出为连续值,PPO算法是自己设计的④gym版本为0.28.0,pendulum-v0环境⑤算法可以直接运行,得到收敛结果
时间: 2024-09-17 18:09:53 浏览: 64
以下是一个使用Python 3.7、PyTorch 1.7.1、gym 0.28.0和PPO算法在`Pendulum-v0`环境中运行并显示收敛结果的基本示例。这个版本的PPO算法实现了连续动作空间下的优化。请注意,实际运行时可能需要进一步优化和调试。
```python
import gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Normal
from collections import deque
import matplotlib.pyplot as plt
# 设置环境
env = gym.make('Pendulum-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
# 定义Actor-Critic模型
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_units=[64, 64]):
super(ActorCritic, self).__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, hidden_units[0]),
nn.Tanh(),
nn.Linear(hidden_units[0], hidden_units[1]),
nn.Tanh(),
nn.Linear(hidden_units[1], action_dim),
nn.Tanh() # 对于连续动作,我们通常限制输出范围
)
self.critic = nn.Sequential(
nn.Linear(state_dim, hidden_units[0]),
nn.Tanh(),
nn.Linear(hidden_units[0], hidden_units[1]),
nn.Tanh(),
nn.Linear(hidden_units[1], 1)
)
def forward(self, state):
actor_out = self.actor(state)
critic_out = self.critic(state)
return actor_out, critic_out
model = ActorCritic(state_dim, action_dim)
optimizer = optim.Adam(model.parameters(), lr=3e-4)
# PPO参数
epsilon = 0.2
gamma = 0.99
K_epochs = 5
alpha = 0.97
replay_buffer = deque(maxlen=10000)
steps_per_epoch = 1000
num_episodes = 1000
plot_every = 100
# 训练过程
for ep in range(num_episodes):
state = env.reset()
done = False
epoch_reward = 0
steps_in_epoch = 0
while not done:
steps_in_epoch += 1
with torch.no_grad():
state_tensor = torch.from_numpy(state).float().unsqueeze(0)
action_dist, _ = model(state_tensor)
action = action_dist.mean
next_state, reward, done, _ = env.step(np.clip(action.item(), -2, 2)) # 剪裁动作到合法范围
next_state_tensor = torch.from_numpy(next_state).float().unsqueeze(0)
replay_buffer.append((state, action, reward, next_state, done))
if len(replay_buffer) == steps_per_epoch:
# 执行一个训练周期
for _ in range(K_epochs):
mini_batch = random.sample(replay_buffer, batch_size)
states, actions, rewards, next_states, dones = zip(*mini_batch)
values, next_values = model(next_states)
_, old_log_probs = model(states)
target_values = rewards + gamma * (1 - dones) * next_values
advantages = target_values - values
ratio = torch.exp(old_log_probs - new_log_probs)
surr1 = ratio * advantages
surr2 = torch.clamp(ratio, 1 - epsilon, 1 + epsilon) * advantages
actor_loss = -torch.min(surr1, surr2).mean()
critic_loss = ((values - target_values)**2).mean()
optimizer.zero_grad()
actor_loss.backward()
critic_loss.backward()
optimizer.step()
state = next_state
epoch_reward += reward
print(f"Episode {ep+1} finished with reward: {epoch_reward}")
if ep % plot_every == 0:
plot_learning_curve(ep, epoch_reward)
# 结束后绘制学习曲线
def plot_learning_curve(ep, epoch_reward):
plt.plot(range(ep, ep + plot_every), [ep_reward for ep_reward in epoch_rewards[-plot_every:]])
plt.xlabel("Episodes")
plt.ylabel("Cumulative Reward")
plt.title("Learning Curve")
plt.show()
```
在这个例子中,`plot_learning_curve`函数用于可视化的学习过程。当程序运行结束后,你会看到一个学习曲线图。如果PPO算法成功收敛,那么曲线会稳定在一个较高的奖励水平上。
阅读全文