transformer 多元时间序列的代码
时间: 2023-07-25 18:06:57 浏览: 115
transformer代码
5星 · 资源好评率100%
以下是使用Transformer处理多元时间序列的Python代码示例:
```python
import torch
import torch.nn as nn
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, d_model=128, num_heads=8, num_layers=6, dropout=0.1):
super(TransformerModel, self).__init__()
# Multi-head attention layers
self.attention_layers = nn.ModuleList([
nn.MultiheadAttention(d_model=d_model, num_heads=num_heads, dropout=dropout)
for _ in range(num_layers)
])
# Feedforward layers
self.feedforward_layers = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, 4 * d_model),
nn.ReLU(),
nn.Linear(4 * d_model, d_model),
nn.Dropout(dropout)
)
for _ in range(num_layers)
])
# Input embedding layer
self.input_embedding = nn.Linear(input_dim, d_model)
# Output linear layer
self.output_layer = nn.Linear(d_model, output_dim)
def forward(self, x):
# x.shape: (seq_len, batch_size, input_dim)
# Input embedding
x = self.input_embedding(x)
# x.shape: (seq_len, batch_size, d_model)
# Transpose sequence to (batch_size, seq_len, d_model)
x = x.transpose(0, 1)
# x.shape: (batch_size, seq_len, d_model)
# Multi-head attention layers
for attention_layer in self.attention_layers:
x, _ = attention_layer(x, x, x)
# x.shape: (batch_size, seq_len, d_model)
# Feedforward layers
for feedforward_layer in self.feedforward_layers:
x = feedforward_layer(x)
# x.shape: (batch_size, seq_len, d_model)
# Transpose sequence back to (seq_len, batch_size, d_model)
x = x.transpose(0, 1)
# x.shape: (seq_len, batch_size, d_model)
# Output linear layer
x = self.output_layer(x)
# x.shape: (seq_len, batch_size, output_dim)
# Transpose sequence back to (batch_size, seq_len, output_dim)
x = x.transpose(0, 1)
# x.shape: (batch_size, seq_len, output_dim)
return x
```
在这个模型中,我们使用了Transformer的核心组件:多头注意力层和前馈网络。输入数据的形状为(seq_len, batch_size, input_dim),其中seq_len是时间序列的长度,batch_size是批次大小,input_dim是每个时间步的特征数。输出数据的形状为(batch_size, seq_len, output_dim),其中output_dim是预测的特征数。
在forward方法中,我们首先将输入数据进行线性变换,将其映射到维度为d_model的向量空间中。然后通过多头注意力层和前馈网络进行特征提取。最后将输出进行线性变换,得到预测结果。
在实际使用中,我们可以根据具体的任务需求来修改模型的参数和结构,例如修改d_model、num_heads、num_layers等参数,或添加更多的线性层或卷积层来进一步提取特征。
阅读全文