python使用transformer实现多元时间序列预测
时间: 2023-08-27 09:17:52 浏览: 136
基于Transformer模型的时间序列预测python源码(高分项目).zip
5星 · 资源好评率100%
多元时间序列预测可以使用Transformer模型来实现。下面是一个简单的Python代码示例,用于使用Transformer模型进行多元时间序列预测:
```python
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
class MultiVarTimeSeriesDataset(Dataset):
def __init__(self, data, seq_len):
self.data = data
self.seq_len = seq_len
def __len__(self):
return len(self.data) - self.seq_len
def __getitem__(self, index):
return self.data[index:index+self.seq_len], self.data[index+self.seq_len]
class TransformerModel(nn.Module):
def __init__(self, input_size, output_size, num_layers, hidden_size, num_heads, dropout):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.num_layers = num_layers
self.hidden_size = hidden_size
self.num_heads = num_heads
self.dropout = dropout
self.encoder = nn.ModuleList([
nn.Linear(input_size, hidden_size),
nn.TransformerEncoderLayer(hidden_size, num_heads, hidden_size, dropout)
])
self.decoder = nn.ModuleList([
nn.Linear(input_size, hidden_size),
nn.TransformerDecoderLayer(hidden_size, num_heads, hidden_size, dropout)
])
self.output_layer = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = x.permute(1, 0, 2) # (seq_len, batch_size, input_size)
for i in range(self.num_layers):
x = self.encoder[i](x)
for i in range(self.num_layers):
x = self.decoder[i](x)
x = x.permute(1, 0, 2) # (batch_size, seq_len, hidden_size)
x = self.output_layer(x[:, -1, :]) # (batch_size, output_size)
return x
if __name__ == '__main__':
# 生成测试数据
data = torch.randn(1000, 4)
train_data = MultiVarTimeSeriesDataset(data[:800], 10)
test_data = MultiVarTimeSeriesDataset(data[800:], 10)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
test_loader = DataLoader(test_data, batch_size=32, shuffle=False)
# 初始化模型
model = TransformerModel(input_size=4, output_size=4, num_layers=2, hidden_size=16, num_heads=2, dropout=0.1)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
for i, (x, y) in enumerate(train_loader):
optimizer.zero_grad()
pred = model(x)
loss = loss_fn(pred, y)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}, Batch {i+1}, Loss {loss.item():.4f}")
# 测试模型
with torch.no_grad():
for i, (x, y) in enumerate(test_loader):
pred = model(x)
loss = loss_fn(pred, y)
print(f"Batch {i+1}, Loss {loss.item():.4f}")
```
此代码中,我们使用`MultiVarTimeSeriesDataset`类将多元时间序列数据转换为训练和测试数据集。我们还定义了`TransformerModel`类来实现Transformer模型。在`forward`方法中,我们首先转置输入张量以便Transformer模型能够处理它。然后我们使用`ModuleList`定义了多个编码器和解码器层,并使用它们来处理输入张量。最后,我们将处理后的张量传递给输出层并返回预测结果。
在训练和测试过程中,我们使用MSE损失函数和Adam优化器对模型进行训练。
阅读全文