Transformer网络进行时间序列预测的Python代码
时间: 2024-10-25 15:09:13 浏览: 10
基于Transformer模型的时间序列预测python源码(高分项目).zip
5星 · 资源好评率100%
Transformer网络在时间序列预测中通常用于自然语言处理任务,比如机器翻译。但在纯的时间序列预测(如股票价格、天气预报等)中,可以将其应用于序列到序列的学习。以下是一个简单的使用PyTorch实现Transformer模型进行时间序列预测的概述:
```python
# 导入所需库
import torch
from torch import nn
# 定义Transformer基本模块
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.register_buffer('pe', _generate positional encoding(d_model, max_len))
def forward(self, x):
return x + self.pe[:x.size(0), :]
def _generate_positional_encoding(max_len, d_model):
# ... 实现位置编码函数 ...
class MultiHeadAttention(nn.Module):
# ... 实现多头注意力机制 ...
class FeedForwardNetwork(nn.Module):
# ... 实现前馈神经网络 ...
class TransformerBlock(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.attn = MultiHeadAttention(d_model, heads)
self.ffn = FeedForwardNetwork(d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None):
# ... 实现Transformer块的前向传递 ...
# 定义Transformer模型
class TimeSeriesTransformer(nn.Module):
def __init__(self, input_dim, output_dim, n_layers, heads, d_model, dropout):
super(TimeSeriesTransformer, self).__init__()
self.embedding = nn.Linear(input_dim, d_model)
self.positional_encoding = PositionalEncoding(d_model)
self.transformer_blocks = nn.Sequential(*[TransformerBlock(d_model, heads, dropout) for _ in range(n_layers)])
self.fc_out = nn.Linear(d_model, output_dim)
def forward(self, x, future_timesteps=1):
# ... 进行输入转换和时间序列预测 ...
# 使用示例
model = TimeSeriesTransformer(input_dim, output_dim, n_layers, heads, d_model, dropout)
optimizer = torch.optim.Adam(model.parameters())
# ... 训练过程 ...
```
阅读全文