transformer时间序列预测的代码
时间: 2023-10-12 22:06:08 浏览: 115
时间预测代码
5星 · 资源好评率100%
下面是一个用Transformer模型进行时间序列预测的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义Transformer模型
class Transformer(nn.Module):
def __init__(self, input_size, output_size, hidden_size, num_layers, dropout):
super(Transformer, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_size, nhead=1, dropout=dropout)
self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.decoder_layer = nn.TransformerDecoderLayer(d_model=output_size, nhead=1, dropout=dropout)
self.decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=num_layers)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, y):
# x: [seq_len, batch_size, input_size]
# y: [seq_len, batch_size, output_size]
# 编码器输入为x,解码器输入为y[:-1]
x = self.encoder(x)
y = self.decoder(y[:-1], x)
# 解码器输出经过全连接层
y = self.fc(y)
return y
# 生成数据
def generate_data(data_size, seq_len):
x = np.zeros((seq_len, data_size))
y = np.zeros((seq_len, data_size))
for i in range(seq_len):
x[i] = np.sin(np.linspace(i*0.1, (i+1)*0.1, data_size))
y[i] = np.sin(np.linspace((i+1)*0.1, (i+2)*0.1, data_size))
return x, y
# 定义超参数
input_size = 10
output_size = 10
hidden_size = 128
num_layers = 2
dropout = 0.1
learning_rate = 0.001
batch_size = 32
seq_len = 100
# 生成数据
x, y = generate_data(input_size, seq_len)
x = torch.tensor(x, dtype=torch.float32).unsqueeze(1) # [seq_len, 1, input_size]
y = torch.tensor(y, dtype=torch.float32).unsqueeze(1) # [seq_len, 1, output_size]
# 定义模型、优化器和损失函数
model = Transformer(input_size, output_size, hidden_size, num_layers, dropout)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()
# 训练模型
for epoch in range(100):
epoch_loss = 0
for i in range(0, seq_len-batch_size, batch_size):
batch_x = x[i:i+batch_size] # [batch_size, 1, input_size]
batch_y = y[i:i+batch_size] # [batch_size, 1, output_size]
pred_y = model(batch_x, batch_y) # [seq_len-1, batch_size, output_size]
loss = criterion(pred_y.view(-1, output_size), batch_y[1:].view(-1, output_size))
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch+1, epoch_loss))
# 预测未来数据
future_x = x[-1].unsqueeze(0) # [1, 1, input_size]
future_y = model(future_x, torch.zeros(1, 1, output_size)) # [seq_len-1, 1, output_size]
future_y = future_y.squeeze(1).detach().numpy() # [seq_len-1, output_size]
```
这个代码用了一个简单的sin函数生成的数据集,每个样本有10个特征,共生成100个样本。模型用了两个Transformer层,每个层都有一个Encoder和一个Decoder。在训练的时候,每次给模型输入一个batch的数据,输出的结果和实际的结果计算MSE损失,然后进行反向传播和优化。最后,用训练好的模型预测接下来的数据。
阅读全文