用transformer实现时间序列预测的代码
时间: 2023-06-20 15:08:03 浏览: 131
以下是一个用Transformer进行时间序列预测的Python代码示例。该示例使用PyTorch深度学习框架。
首先,导入所需的Python库和模块:
```python
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
```
接下来,创建一个Transformer模型:
```python
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout):
super(TransformerModel, self).__init__()
# Encoder layer
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_encoder_layers)
# Decoder layer
decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_decoder_layers)
# Linear layer
self.linear = nn.Linear(d_model, output_dim)
# Positional encoding
self.pos_encoder = nn.Embedding(input_dim, d_model)
self.pos_decoder = nn.Embedding(output_dim, d_model)
# Dropout
self.dropout = nn.Dropout(p=dropout)
# D_model
self.d_model = d_model
def forward(self, src, tgt):
# Add positional encoding to input and target
src = self.pos_encoder(src) * np.sqrt(self.d_model)
tgt = self.pos_decoder(tgt) * np.sqrt(self.d_model)
# Apply dropout
src = self.dropout(src)
tgt = self.dropout(tgt)
# Encoder output
memory = self.encoder(src)
# Decoder output
output = self.decoder(tgt, memory)
# Linear layer
output = self.linear(output)
return output
```
然后,准备数据并训练模型:
```python
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Prepare data
train_data = torch.from_numpy(train_data).to(device)
train_target = torch.from_numpy(train_target).to(device)
test_data = torch.from_numpy(test_data).to(device)
test_target = torch.from_numpy(test_target).to(device)
# Model parameters
input_dim = 1
output_dim = 1
d_model = 256
nhead = 8
num_encoder_layers = 6
num_decoder_layers = 6
dim_feedforward = 512
dropout = 0.1
# Create model
model = TransformerModel(input_dim, output_dim, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout).to(device)
# Loss function
criterion = nn.MSELoss()
# Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Train model
num_epochs = 100
for epoch in range(num_epochs):
# Forward pass
outputs = model(train_data, train_target[:-1])
loss = criterion(outputs, train_target[1:])
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print training progress
if (epoch+1) % 10 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
最后,使用训练好的模型进行预测并画图:
```python
# Test model
model.eval()
with torch.no_grad():
# Predict future values
future = 100
pred = model(test_data, test_target[-future:-1]).detach().cpu().numpy()
# Plot results
plt.figure(figsize=(12,5))
plt.plot(test_target.cpu().numpy(), label='Observed')
plt.plot(np.arange(len(test_target)-future, len(test_target)), pred, label='Predicted')
plt.legend(loc='upper left')
plt.show()
```
阅读全文