transformer实现多变量多步时间序列预测的代码
时间: 2023-09-03 22:15:45 浏览: 136
以下是一个使用Transformer实现多变量多步时间序列预测的代码示例:
```python
import torch
import torch.nn as nn
import numpy as np
class MultiVariateTransformer(nn.Module):
def __init__(self, input_dim, output_dim, n_head, n_layers, dropout):
super(MultiVariateTransformer, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.n_head = n_head
self.n_layers = n_layers
self.dropout = dropout
self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=n_head, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=n_layers)
self.decoder_layer = nn.TransformerDecoderLayer(d_model=output_dim, nhead=n_head, dropout=dropout)
self.transformer_decoder = nn.TransformerDecoder(self.decoder_layer, num_layers=n_layers)
self.fc = nn.Linear(input_dim, output_dim)
def forward(self, input_seq):
# input_seq: (seq_len, batch_size, input_dim)
input_seq = input_seq.permute(1, 0, 2) # (batch_size, seq_len, input_dim)
encoder_output = self.transformer_encoder(input_seq) # (batch_size, seq_len, input_dim)
decoder_input = torch.zeros((input_seq.shape[0], self.output_dim)).to(input_seq.device) # (batch_size, output_dim)
decoder_input = decoder_input.unsqueeze(1).repeat(1, input_seq.shape[1], 1) # (batch_size, seq_len, output_dim)
for i in range(decoder_input.shape[1]):
decoder_output = self.transformer_decoder(decoder_input[:, :i+1, :], encoder_output) # (batch_size, i+1, output_dim)
decoder_input[:, i, :] = self.fc(decoder_output[:, i, :]) # (batch_size, output_dim)
return decoder_input.permute(1, 0, 2) # (seq_len, batch_size, output_dim)
```
使用示例:
```python
# 准备数据
train_input_seq = np.random.rand(100, 64, 5) # (seq_len, batch_size, input_dim)
train_target_seq = np.random.rand(10, 64, 2) # (seq_len, batch_size, output_dim)
train_input_seq = torch.tensor(train_input_seq).float()
train_target_seq = torch.tensor(train_target_seq).float()
# 初始化模型
model = MultiVariateTransformer(input_dim=5, output_dim=2, n_head=8, n_layers=6, dropout=0.1)
# 训练模型
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.MSELoss()
for epoch in range(100):
optimizer.zero_grad()
pred_target_seq = model(train_input_seq)
loss = criterion(pred_target_seq[-10:, :, :], train_target_seq)
loss.backward()
optimizer.step()
print("Epoch:", epoch, "loss:", loss.item())
# 预测结果
test_input_seq = np.random.rand(100, 1, 5)
test_input_seq = torch.tensor(test_input_seq).float()
with torch.no_grad():
pred_target_seq = model(test_input_seq)
print(pred_target_seq.shape) # (seq_len, batch_size, output_dim)
```
阅读全文