时间序列预测transformer代码
时间: 2023-09-04 08:08:23 浏览: 168
时间预测代码
5星 · 资源好评率100%
当然可以!以下是一个简单的时间序列预测的 Transformer 模型的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
class TimeSeriesTransformer(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim, num_layers):
super(TimeSeriesTransformer, self).__init__()
self.encoder = nn.TransformerEncoder(
nn.TransformerEncoderLayer(hidden_dim, nhead=4),
num_layers=num_layers
)
self.decoder = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
# 生成训练数据
def generate_data(input_dim, output_dim, hidden_dim, num_layers):
# 随机生成一些时间序列数据
x = np.random.randn(1000, input_dim)
y = np.random.randn(1000, output_dim)
# 将数据划分为训练集和测试集
train_x, train_y = x[:800], y[:800]
test_x, test_y = x[800:], y[800:]
# 转换为张量格式
train_x = torch.tensor(train_x, dtype=torch.float32)
train_y = torch.tensor(train_y, dtype=torch.float32)
test_x = torch.tensor(test_x, dtype=torch.float32)
test_y = torch.tensor(test_y, dtype=torch.float32)
model = TimeSeriesTransformer(input_dim, output_dim, hidden_dim, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 开始训练
for epoch in range(100):
optimizer.zero_grad()
output = model(train_x)
loss = criterion(output, train_y)
loss.backward()
optimizer.step()
print(f"Epoch: {epoch+1}, Loss: {loss.item()}")
# 测试模型
with torch.no_grad():
test_output = model(test_x)
test_loss = criterion(test_output, test_y)
print(f"Test Loss: {test_loss.item()}")
# 设置模型参数
input_dim = 10
output_dim = 5
hidden_dim = 64
num_layers = 2
# 生成数据并训练模型
generate_data(input_dim, output_dim, hidden_dim, num_layers)
```
注意,这只是一个简单的示例,实际中可能需要根据数据的特点进行调整和优化。希望这个代码对你有所帮助!如果有任何其他问题,请随时问我。
阅读全文