tensorflow实现mlp的代码
时间: 2023-06-06 16:05:30 浏览: 102
可以参考以下代码:
```
import tensorflow as tf
# 定义 MLP 模型
class MLP(tf.keras.Model):
def __init__(self):
super(MLP, self).__init__()
self.flatten = tf.keras.layers.Flatten() # 将输入数据展平
self.dense1 = tf.keras.layers.Dense(units=128, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(units=10)
def call(self, inputs):
x = self.flatten(inputs)
x = self.dense1(x)
x = self.dense2(x)
return x
# 加载数据集,并进行预处理
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0
# 训练模型
model = MLP()
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
# 在测试集上评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Test accuracy:", test_acc)
```
阅读全文